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Abstract. Continuous-modeling limit analysis is one of the promising tools for 
analyzing the failure of soil-like material. Standard formulation comes up from 
the idea of finite element analysis. Usually, in this approach, the freedom of the 
degrees is assigned at the nodes. However, such a theory will limit the shape of 
the elements, which is only applicable to solving triangular mesh. In this paper, 
we propose a novel approach based on the idea of continuous modeling limit 
analysis. Here, all the variables are assigned at the centroid of the element, 
through which the approach can be easily extended to consider arbitrary poly-
gon discretization. Assuming constant strain distribution, we first derive the ge-
ometric compatibility for arbitrary polygon deformable elements. Then, the 
flow rule for the plasticity in the elements is investigated. Implementing the 
proposed theory, the classical strip footing problem is solved as a benchmark 
study, with consideration of one triangular mesh and two polygon mesh. The 
results show that the load predicted by polygon mesh is overestimated, indicat-
ing the occurrence of the locking in the elements. However, the strain rate dis-
tribution predicted by the polygon mesh is more uniform. 

Keywords: Limit analysis, Soil-like material, Polygon mesh, Voronoi, Contin-
uous modelling. 

1 Introduction 

Limit analysis is one of the important approaches to analyzing the failure of the 
soil-like material, through which the collapse mechanism and the ultimate load of the 
continuum can be quickly predicted in a single step. Utilizing this approach, many 
geomechanics problems [1–4] as well as soil-structure interactions [5–9] can be inves-
tigated. In these contributions, the soil was commonly regarded as a deformable con-
tinuum discretized by small elements. The governing formulations for these elements 
were developed based on the idea of Finite Element Method (FEM). Usually, linear 
distribution for the displacement (velocity) within the elements was assumed, and as 
we know in finite element theory, such shape function can be easily incorporated with 
triangular elements. Nevertheless, the triangular mesh can only produce straight 
cracking, which should deviate from reality. Polygon elements should be more suita-
ble to obtain a more realistic zig-zag crack propagation. However, proposing a de-
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formable polygon element is a quite complex problem because it requires a cautious 
design of the shape function. In this paper, we develop a novel deformable polygon 
element with constant-strain distribution, which could become an alternative when 
implementing the limit analysis. 

The formulation is established based on the Upper Bound theory. We first propose 
the geometric compatibility condition for arbitrary polygon elements with constant 
strain. Then, the flow rule condition describing the plastic behavior in the elements is 
investigated. Here, we use the associated Mohr-Coulomb model for both the sliding 
behavior at interfaces and the plastic behavior in elements. In this paper, we present 
the collapse analysis of the classical strip footing problem as an implementation of the 
proposed theory. First, the collapse of the strip footing with a mesh of triangular ele-
ments is analyzed as a benchmark to verify the precision of the proposed theory. 
Then, the performance of polygon elements is investigated, with consideration of two 
different types of discretization. We finally conclude the paper with some discussions 
of these results. 

2 Methodology 

In this section, we propose a deformable element with arbitrary polygon shape for 
limit analysis. A constant strain field is assumed. The formulation is established based 
on Upper Bound (UB) theorem. Now let us first investigate the geometric compatibil-
ity condition. 
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According to the elastic theory, the strain rate field can be derived from the devia-
tion of the velocity field (Eq. (1)). The known stain rates and velocities at the centroid 
of the element act as a boundary condition of partial differential equations (2), taking 
the centroid as the original. 

As a result, the velocity field in a specific polygon element i can be explicitly given 
as follows (Eq. (3)). 
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We now proceed to consider two adjacent blocks a and b, with a shared joint j 
(Fig. 1) and investigate how to calculate the velocity discontinuities qj at this joint 
based on centroid variables (ui and εi, i = a, b). 

 

 
Fig. 1.  Joint j with two adjacent polygon blocks a and b: calculation of velocity discontinuities. 

Based on the known velocity field, for block i, the velocities at vertices 1 and 2 as-
sociated with joint j under the global frame can be calculated (Eq. (4), written as a 
matrix form). 
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Then, we subtract velocities at the corresponding vertices in blocks a and b. The 
joint discontinuous can be derived by projecting such subtraction onto the local frame 
of the joint. The matrix form of this relation is given in Eq. (5). 

The components in matrices ,
i
j uA  and ,

i
j εA  are given in, which completely de-

pend on the geometry of the elements.  
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Assembling the geometric compatibility condition for all the joints, we can write 
the compatibility constraint in a global matrix form (Eq. (7)). Compared with the one 
for rigid elements [10], a term T

εA ε  is added to the compatibility condition, consider-
ing the deformability of the elements. 

 T T
u ε =+ qA u A ε  (7) 

Regarding the interfacial behavior, Mohr-Coulomb friction model is employed 
here (Eq. (8)) and the flow rule for the interfacial discontinuous velocities is associat-
ed with it. Thus, these velocities be represented through the involvement of plasticity 
multipliers (Eq. (9)). 
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A flow rule associated with Mohr-Coulomb criterion for the continuum is also ap-
plied here to constrain the element strain rate [11]. Standard Mohr-Coulomb criterion 
(see Eq. (10)) is nonlinear and the corresponding flow rule cannot be written as a 
linear constraint. Thus, we follow the solution proposed in [12], linearizing this yield 
surface into p planes. The equation of the kth plane is given in Eq. (11), where coeffi-
cients Ak, Bk, and Ck are given in Eq. (12). 
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According to the associativity, the plastic strain rate for each element is linked with 
k non-negative plastic multipliers (left side of Eq. (13)) and we can also write the 
equivalent matrix form collecting the variable for all the elements (right side of Eq. 
(13)). 
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The plastic dissipation at the interfaces ,
c

D jW  (for joint j) and elements ,
e

D iW  (for 
element i) can both be calculated from the inner product of the cohesion vector and 
plastic multiplier vector (Eq. (14)). Summing these over all the interfaces or elements, 
the global dissipation power at the interfaces and elements can be represented. 
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Taking into account the dissipation power in the objective function, we can estab-
lish an optimization formula Eq. (15) based on the UB theory. The terms in red are all 
related to the consideration of the deformability of the elements. 
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3 Results: strip footing problem 

As a verification of the proposed theory, we perform the collapse analysis of the 
plane strain strip footing. This benchmark is a classical problem in geomechanics and 
the analytical solution is available. In the work of Sloan and Kleeman [12], they pre-
dicted the collapse load of this problem through the limit analysis with a triangular 
discretization for the soil, and the result is consistent with the analytical solution. In 
this section, the collapse of the strip footing with the structured triangular discretiza-
tion, which agrees with the one employed in the literature [12], is first presented as a 
benchmark. Then, we proceed to investigate the performance of the polygon mesh in 
analyzing this problem.  

 
3.1 Benchmark: structured triangular mesh 

We select the case of weightless cohesive-frictional soil, with surface pressure. To 
verify the proposed approach, the geometry, mesh, load, and boundary conditions are 
kept in line with the ones in Sloan and Kleeman (see [12]). The depth of the soil is 
1000 mm. Triangular mesh with different refinements is first considered (Fig. 2). We 
also compare the result of different precision of linearization for the Mohr-Coulomb 
yield surface (p = 6, 12 and 24). 
 

  
(a) coarse mesh (b) fine mesh  

Fig. 2.  Strip footing problem (refer to [12]), load and boundary conditions, triangular mesh. 

Comparing the results of p = 6, 12 and 24 in Fig. 3 and Fig. 4, we can find that in-
creasing the number of planes will give rise to a better prediction. After employing 
more linearizing planes, the separation velocity among the element is reduced and the 
cracks spread in the continuum in a more uniform manner. The deformability of the 
element rises, with an exhibition of smoother distribution of the strain rate. The pre-
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dicted collapse load is also more conservative. Such improvement in the prediction 
should be attributed to the fact that the Mohr-Coulomb surface is more precisely rep-
resented when linearizing planes increases. 

 

 

 
(a) p = 6, deformation (b) p = 6, strain rate distribution 

 

 
(c) p = 12, deformation (d) p = 12, strain rate distribution 

 

 
(e) p = 24, deformation (f) p = 24, strain rate distribution 

Fig. 3.  Collapse of the strip footing problem, triangular element, coarse mesh. 

 The collapse load will also decrease if the mesh is refined (compare Fig. 3 and 
Fig. 4). Thanks to the employment of smaller elements, more detailed crack propaga-
tion in the continuum is produced. The representation of strain rate distribution is also 
improved because we only assume a constant strain rate field in each element. A re-
fined mesh can accurately catch the change in the strain rate in the soil. Note that in 
this case, refining the linearization of the yield surface brings about a better improve-
ment in the results rather than refining the mesh. Regarding the collapse load, reduc-
ing the element size will cut down only 0.6% of the prediction while the load presents 
a 14.7% drop when increasing the number of linearizing planes. 
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(a) p = 6, deformation (b) p = 6, strain rate distribution 

 

 
(c) p = 12, deformation (d) p = 12, strain rate distribution 

 

 
(e) p = 24, deformation (f) p = 24, strain rate distribution 

Fig. 4.  Collapse of the strip footing problem, triangular element, fine mesh. 

According to the geomechanics, the Prandtl collapse pressure for a surface footing 
on a weightless cohesive-frictional soil is given in Eq. (16), where c and φ are, respec-
tively, the effective cohesion and friction angle. In this analysis, we keep the φ = 30° 
and c = 1 MPa, which is the same as the parameter set in [12]. The exact solution for 
qf is 30.14 MPa. 

 ( )( )tan 2 cot tan 4 2 1f cq N c e cπ ϕϕ π ϕ+ −= =  (16) 

The collapse load predicted by triangular mesh and polygon mesh presented above 
is summarized in Table 1. Here, qf,tri is the collapse load predicted by the structured 
triangular mesh; qf,s is the result reported in [12]; qf is the accurate value calculated by 
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the analytical solution. In the triangular case, the results produced by the proposed 
approach are basically consistent with the prediction in [12], verifying that the pre-
sented theory can give a correct solution to the strip footing problem. 

Table 1.  Results for strip footing on cohesive-frictional, structured triangular mesh. 

Mesh size p qf,tri 
(MPa) 

qf,tri error 
(%) 

qf,s 
(MPa) 

qf,s error 
(%) 

qf 
(MPa) 

Coarse mesh 6 37.20 23.4 37.26 23.6 

30.14 

Fine mesh 6 36.98 22.7 37.04 22.9 
Coarse mesh 12 33.27 10.4 33.36 10.7 
Fine mesh 12 32.56 8.0 32.67 8.4 

Coarse mesh 24 32.37 7.4 32.70 8.5 
Fine mesh 24 31.51 4.5 31.75 5.4 

 
3.2 Polygon mesh case 

Then, the collapse of this problem where the soil is discretized by the polygon el-
ements is analyzed to understand the performance of the proposed elements. Polygon 
mesh is produced based on Voronoi tessellation. Two types of Voronoi mesh are con-
sidered: a) random Voronoi mesh, where the shape of the polygon is more random 
(Fig. 5a); b) centroid Voronoi mesh, where the shape of the polygon is more regular 
(Fig. 5b). Both these two meshes are generated through an open-source code 
“lloydsAlgorithm” [13]. Here we do not consider the different element sizes. The 
numbers of the element for Random Voronoi and Centroid Voronoi mesh are both 
1125. The characteristic size of the elements is about 210 mm.  
 

  
(a) Random Voronoi mesh (b) Centroid Voronoi mesh 

Fig. 5.  Strip footing problem with polygon mesh, load and boundary conditions. 

In the polygon mesh case, we also find that a better prediction will be obtained if 
the number of linearizing planes increases. Not only is the distribution of the strain 
rate more smooth, but the predicted collapse load also becomes safer. This regulation 
agrees with the observation in the triangular case. Increasing from 6 to 24, the load 
drops about 26.5 – 31.8 %. 
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(a) deformation, p = 6 (b) strain rate distribution, p = 6 

 

 
(c) deformation, p = 12 (d) strain rate distribution, p = 12 

 

 
(e) deformation, p = 24 (f) strain rate distribution, p = 24 

Fig. 6.  Collapse of the strip footing problem, polygon element, random Voronoi mesh. 

Comparatively, the centroid Voronoi mesh predicts a more uniform distribution of 
the strain rate than the random Voronoi mesh (compare Fig. 6 and Fig. 7). While the 
collapse load predicted by centroid Voronoi mesh is slightly higher (about 7 – 14 %). 
The deformation and the spreading of the cracks predicted by these two polygon 
meshes are basically in line with each other. 

Collapse loads predicted by polygon mesh are all higher than the one in the trian-
gular case (see Fig. 3 and Fig. 4), indicating that a locking phenomenon may take 
place in the element or at the interfaces. The locking at the interfaces should be 
caused by the shape of the element. No possible straight cracking can happen among 
polygon elements. As a result, the interaction between the elements tends to be extru-
sion instead of frictional sliding. Thus, we can observe a large number of cracks 
spreading within the whole continuum body. Oppositely, the separation between the 
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elements is not very obvious. Another part of the locking happens within the element, 
which should result from the assumption of constant strain distribution. For the trian-
gular element, the number of nodal degrees (3 nodes and two velocities for each) is 
equal to the number of centroid variables (6, see Eq. (4)). While in the polygon case, 
nodal freedom increases but the number of centroid variables remains at 6. This 
means that in the polygon element, the velocity at each node is not independent. In 
other words, they are locked with each other to some extent, which makes the pro-
posed polygon element behave physically stiffer than the triangular element. This also 
explains why polygon mesh predicts a larger collapse load.  

 

 

 
(a) deformation, p = 6 (b) strain rate distribution, p = 6 

 

 
(c) deformation, p = 12 (d) strain rate distribution, p = 12 

 

 
(e) deformation, p = 24 (f) strain rate distribution, p = 24 

Fig. 7.  Collapse of the strip footing problem, polygon element, centroid Voronoi mesh. 

The collapse load predicted by two types of polygon mesh is collected in Table 2. 
qf,poly represents the collapse load predicted by the polygon mesh. The load predicted 
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by polygon mesh is about 36 – 83% greater than the accurate solution, which again 
indicates the locking phenomenon may occur. In addition, note that if the precision of 
the linearization for the yield surface is improved, the locking in the elements will be 
reduced to some extent. 

Table 2.  Results for strip footing on cohesive-frictional, polygon mesh. 

Mesh type p qf,poly 
(MPa) 

qf,poly error 
(%) 

qf,tri 
(MPa) 

qf,tri error 
(%) 

qf 
(MPa) 

Random Voronoi 6 58.48 94.0 36.98 22.7 

30.14 

Centroid Voronoi 6 67.67 124.5 
Random Voronoi 12 43.36 43.9 32.56 8.0 
Centroid Voronoi 12 50.33 67.0 
Random Voronoi 24 43.01 42.7 31.51 4.5 
Centroid Voronoi 24 46.15 53.1 

4 Conclusions 

In this paper, we have proposed a deformable polygon element with constant-strain 
distribution for the discretization of soil when using the limit analysis. The formula-
tion is established based on the Upper Bound theory. We have first updated the geo-
metric compatibility condition to consider the deformability of the element, and the 
associated Mohr-Coulomb flow rule is then employed for modeling the plastic defor-
mation in these elements. Implementing the proposed theory, the collapse analysis of 
the classical strip footing problem has been presented as a benchmark. We have re-
peated the structured triangular case that has been analyzed by previous researchers to 
verify the accuracy of the proposed theory. After that, the performance of different 
polygon discretization has been compared. 

The results of the triangular-mesh case show that, when analyzing the strip footing, 
the presented theory can give consistent predictions to the simulation in the previous 
contribution, verifying the accuracy of the approach. The load predicted by polygon 
mesh presents an overestimation of about 36 – 83%, which indicates that, in this prob-
lem, the proposed elements may suffer from interior locking. In other words, the de-
formable polygon element is stiffer than the triangular one under the same condition 
of the mesh size. However, the distribution of the strain rate predicted by the polygon 
mesh is more uniform. According to our study, employing the polygon with a more 
regular shape will give rise to a better prediction of strain rate distribution, while the 
predicted load may be slightly higher (see the case of Centroid Voronoi mesh). Refin-
ing the linearization of the yield surface in both triangular and polygon cases will 
bring about a more conservative prediction of the ultimate load.  

Future work will concern how to reduce the locking of the polygon element for 
better performance. We will also apply the proposed theory to different types of prob-
lems, investigating such locking phenomena under different boundary conditions. The 
applicability of the proposed element may then be concluded. 
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