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Abstract. This paper develops the fixed point theory for the optimal design of tuned mass dampers with piezoelectric stack energy harvesters under harmonic base excitation. The existence of two fixed points of the amplitude-frequency curve of the primary structure is proved. Based on the requirements for suppressing the vibration of the primary structure and enlarging the harvested power, the optimal tuning, damping, and resistance ratios are determined. Numerical examinations of the system with the obtained optimal parameters are performed, demonstrating a very good compatibility between theory and computation. More specially, it is shown that not only the vibration of the primary structure is effectively reduced but also a large amount of the harvested energy can be captured in the main resonance domain. 
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1 Introduction
Energy harvesting from vibration suppression devices, specially tuned mass dampers with piezoelectric stack energy harvesters (TMD-PSEH), has become a growing need in recent years. Such devices are so-called dual-function ones that are required to be optimized for both mechanical and electrical characteristic parameters due to the inherent electromechanical coupling effect. Nevertheless, it is not always possible to determine the optimal parameters in explicit form. Even in the case of mechanical TMDs, it is difficult to find optimal tuning and damping ratios except in some special cases, usually when the primary structure is undamped [1-3]. The fixed point theory proposed by Den Hartog [1] is one of the few methods that can provide exact results for these cases. For other cases of mechanical TMDs in general, it is necessary to use analytical approximations such as [4-7]. For electromechanical coupling systems such as TMD-PSEH, it is even more difficult to determine simultaneously the optimal mechanical and electrical parameters. Therefore, previous studies on energy-harvesting TMDs such as [8-10] mainly use approaches of approximate and/or numerical analysis to investigate the basic characteristics of these electromechanical coupling systems.
     For the above-mentioned reasons, this paper focuses on developing the fixed point theory to determine the optimal tuning, damping, and resistance ratios of TMD-PSEH attached to an undamped primary structure under base excitation.
2 Undamped primary structure with TMD-PSEH under base excitation

Consider the system of the undamped primary structure with TMD-PSEH (hereafter called the TMD-PSEH system) subjected to base excitation as shown in Fig. 1a, where 
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 and 
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, respectively. A PSEH is connected to the spring 
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 in series mechanically, and to an electric resistor 
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 in parallel electrically. The harmonic base excitation 
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 with amplitude 
[image: image14.wmf]0

z
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Fig. 1. Schematic of TMD-PSEH system: a) lumped-mass model, b) equilibrium of forces

It is known that the block of the TMD spring and PSEH can be treated as an equivalent spring of two springs 
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 and 
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 connected in series. The electromechanical coupling between the mechanical and electrical parameters of the block is presented by the constitutive equations [11]
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where
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Physically, 
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 are the deformation of the block and the voltage across the external resistor 
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 under the delivered force 
[image: image26.wmf]2

f

 which produces the electric charge 
[image: image27.wmf]q

, 
[image: image28.wmf],

,

pp

p

kC

q

 are the stiffness, effective electromechanical coupling coefficient, and internal capacitance of piezo stack, 
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 are the equivalent ones of the block, respectively. Accordingly, the lumped-parameter model can be used for modeling the TMD-PSEH system. Namely, applying Newton's law for motions of 
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 (see Fig. 1b), and combining with the equation obtained by taking the derivative of Eq. (3)

(Kirchhoff's law) , yields the governing equations for the TMD-PSEH system
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By setting
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where 
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 is the electromechanical coupling coefficient, 
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 is the resistance ratio, and 
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 is the transformed voltage. Then the equation system (7)

 is rewritten as (5)
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Eqs. 
(11)

 perform a linear system of ordinary differential equations (ODE) of three unknown, mechanical displacements (9)

- GOTOBUTTON ZEqnNum183329  \* MERGEFORMAT  and electrical voltage 
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. The solutions can be determined using analytical methods. Here we deal with dimensionless outputs, including the mechanical magnification factor 
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 of the primary structure, voltage amplitude 
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, and averaging power in a period 
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, that are respectively obtained by the complex amplitude method as follows
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where 
[image: image50.wmf]1

a

 is the amplitude of displacement response of the primary structure, 
[image: image51.wmf]0

z

 is the amplitude of base excitation as denoted in (1)

, and
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Eq. 
(12)

 shows that  GOTOBUTTON ZEqnNum436878  \* MERGEFORMAT  depends on six parameters including three mechanical parameters 
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 also known as perturbation input. When the electromechanical coupling vanishes, i.e. 
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 reduces to the formula of the mechanical TMD system [ GOTOBUTTON ZEqnNum436878  \* MERGEFORMAT , 3] where the relative 
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. Although closed-form solutions of the system (11)

 are analytically determined, it is necessary to optimize the system's performance for engineering purposes. (9)

-
3 Determination of optimal tuning, damping, and resistance ratios of TMD-PSEH

Generally, two main basic requirements for the effective performance of a TMD-PSEH system are technically posted: the first, perhaps also the priority, is to suppress the vibration of the primary structure, the second is to enlarge as much harvested electric energy as possible. From this, the optimization strategy could be drawn as follows
a) The first requirement involves optimizing the stiffness and damping of the TMD-PSEH, represented by the tuning ratio 
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 and damping ratio 
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. This will be carried out first.
b) The second requirement involves optimizing the output electrical power, this will be carried out later.
Consider the amplitude-frequency curve 
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. From the undamped property of the primary structure, there possibly exist fixed points whose ordinates are independent of TMD damping  GOTOBUTTON ZEqnNum436878  \* MERGEFORMAT . Hence, looking for fixed points, if they exist, will be performed first. Based on the methodology of Den Hartog in the fixed-point theory [1], we require that the value of 
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which leads to the following biquadratic equation for 
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Solving 
(17)

 obtains two positive solutions. Moreover, using other specific values of  GOTOBUTTON ZEqnNum348452  \* MERGEFORMAT , e.g. 
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Substituting 
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 into  GOTOBUTTON ZEqnNum412538  \* MERGEFORMAT  
(16)

 yields the ordinates  GOTOBUTTON ZEqnNum491673  \* MERGEFORMAT  as follows (also not explicitly shown here due to very long expressions
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Following the suggestion by Den Hartog [1], the optimal tuning ratio 
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 is determined from the condition


[image: image86.wmf]11

PQ

KK

=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (20)

Substituting 
(19)

 into (20) leads to the following equation of  GOTOBUTTON ZEqnNum471042  \* MERGEFORMAT 
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where 
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Substituting 
(18)

, one gets the final results of (22)

 to  GOTOBUTTON ZEqnNum390993  \* MERGEFORMAT  and 
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Using 
(23)

, obtains the relative values of  GOTOBUTTON ZEqnNum295553  \* MERGEFORMAT  from (19)
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Therefore, the TMD-PSEH also has the same two fixed points as the mechanical TMD. More specially, the abscissas and ordinates of P and Q given by 2(24)

, respectively, are exactly coincident with that of two fixed points of the mechanical TMD as given in [(23)

,  GOTOBUTTON ZEqnNum295553  \* MERGEFORMAT , 3]. Besides, it is shown from (22)

 that
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where 
[image: image99.wmf]DH

b

 is the optimal tuning ratio of the mechanical TMD derived from the fixed-point theory [2, 3].
Next, to find the optimal damping ratio, it is derived from the requirement that 
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 are in the vicinity of two peaks of the curve 
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The expression of 
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 can be extracted using (12)

 leads to(26)

. Indeed, squaring (12)

 and 
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Taking the derivative on both sides of (26)

, yields(27)

 at P and/or Q with noting 
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where 
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K

 is the ordinates 
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 for  GOTOBUTTON ZEqnNum999392  \* MERGEFORMAT , one gets two solutions
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where 
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Fig. 2. 
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So the optimal tuning and damping ratios for TMD-PSEH 
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Next, consider the electric part of PSEH that is represented by a resistor-capacitor parallel circuit, as shown in Eq. [image: image140.wmf]0

I

(11)

. Neglecting the coupling effect on the circuit, under excitation by a sinusoidal current source with a magnitude  GOTOBUTTON ZEqnNum293937  \* MERGEFORMAT  and frequency 
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Solving the condition 
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, it is found that the circuit has a maximum power output at the optimal resistive load of  GOTOBUTTON ZEqnNum288906  \* MERGEFORMAT  [13], regarding 
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Substituting 
(31)

, this will give the final results of (22)

 and (33)
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The explicit expression of 
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 is not presented here due to being very long. It is shown from 
(34)

 that when  GOTOBUTTON ZEqnNum188075  \* MERGEFORMAT  one gets the well-known result of the optimal mechanical TMD [2, 3]
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It is also seen from Fig. 2 that the optimal resistance ratio 
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4 Numerical examination 

Here, a numerical investigation of the undamped primary structure with the TMD-PSEH is carried out with 
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Fig. 3a depicts four curves 
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 has the lowest peaks in comparison with the curves related to four other values of 
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. The coordinates of P and Q are P(0.908,6.403) and Q(1.062,6.403), which are very close two the left peak (0.91,6.408) and right peak (1.067,6.407), respectively. Fig. 3b depicts the curves 
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. This case corresponds to the adjustment of the external resistor R for the optimal TMD-PSEH in use. Also, the curve related to 
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, the corresponding curves have two peaks, one of them is always higher than the two peaks of the optimal curve. The coordinates of the left highest peak related to the open circuit is (0.905,7.075), of the right one related to the short circuit is (1.07,6.964).
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Fig. 3. 
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Fig. 4. 
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Fig. 4a depicts the average output power 
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 gives no output power. Clearly, the curve related to 
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 is the enveloped curve and shows the largest amount of electrical harvest energy in a period. 

Fig. 4b depicts 
[image: image196.wmf]()

av

P

l

 of the optimal TMD-PSEH with the variations of 
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 (pink region), is much higher than that outside the resonance domain.
5 Conclusion

In the paper, this is the first time the fixed point theory by Den Hartog is developed to find the optimal parameters of a TMD-PSEH. Conclusions that can be drawn are: 

(a) First, a model and governing equations of the TMD-PSEH system are presented where the TMD spring and PSEH are connected in series. The expressions of dimensionless outputs, such as the mechanical magnification factor 
[image: image204.wmf]1

K

 of the primary structure, voltage amplitude, and averaging power 
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 in a period, are also presented.

(b) The existence of two fixed points P and Q of the curve 
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 has been proved analytically, and they coincide with the two fixed points of the optimal mechanical TMD. Thus, the undamped nature of the main structure leads to the existence of two fixed points, whether mechanical TMD or TMD-PSEH.

(c) Based on the two main technical requirements of suppressing the vibration of the primary structure, and enlarging the harvested power, the optimal tuning, damping and resistance ratios, 
[image: image207.wmf]2

,

,

p

o

po

p

o

xa

b

, respectively, are determined. Their closed-form expressions show the dependence of 
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(d) Numerical investigations of the TMD-PSEH system demonstrates the very good agreement between theory and computation. Two peaks of the curve 
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 are very near P and Q and have almost equal ordinates, and 
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 yields the largest amount of harvested energy in a period with the optimal resistance ratio
[image: image214.wmf]1

op

a

=

. 

(e) It appears that the fixed point theory has a large potential to exploit further energy-harvesting TMD systems.
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