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Abstract. A novel equation is proposed to predict the bearing capacity of ring 

foundation embedded in anisotropic clays using a machine learning approach: 

Multivariate adaptive regression spline (MARS). The previous study's numerical 

results are adopted as the MARS model's training data. The results from the pro-

posed equation are compared with previous studies and field data. As a result, a 

good agreement between results from the proposed equation and those from pre-

vious studies is obtained. The findings of this research can be a valuable tool for 

calculating the stability number of ring foundations in anisotropic clays. 
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1 Introduction 

Ring footings, which support axisymmetric structures like offshore platforms, silos, 

and chimneys, are a popular choice for foundation systems because they are more cost-

effective than circular footings but have similar efficiency. To examine the effective-

ness of ring footings, studies have been conducted on their bearing capacity on both 

sand and clay [1-4]. Various calculation methods for estimating the bearing capacity of 

ring footings have been developed, including numerical models such as FLAC and fi-

nite element analysis (FEA) with the Plaxis code. Previous researches have also used 

finite element limit analysis (FELA) to estimate the bearing capacity factors for ring 

foundations on cohesive-frictional soils. Besides, a number of studies have investigated 

the bearing capacity of ring footings on soils or rocks, including researches by Khatri 

and Kumar, Lee et al., Yang et al., Birid and Choudhury, Yodsomjai et al., Lai et al., 

and Keawsawasvong et al. [5-16]. 

The strengths of anisotropic clays were first mentioned by Casagrande and Carillo 

[17] and Lo [18]. Ladd [19, 20] proposed relations between undrained shear strengths 

obtained from tri-axial compression, tri-axial extension, and direct simple shear and the 

plasticity index of clay. Krabbenhoft and Lyamin [21] proposed a new failure criterion 

for anisotropic clays called the anisotropic undrained shear failure criterion. 
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Non-homogeneous clays have an increase in shear strengths with depth, which is 

important in geotechnical stability issues [22-28]. The coupling effect of anisotropic 

and non-homogeneous behaviors of undrained soils is investigated in various works 

such as excavation [30–33], tunnel [34-36], slope stability [29,30], trapdoors phenom-

ena [31-33], and foundation capacity [34-37].  

However, predicting the ultimate bearing capacity and failure mechanism of a ring 

foundation embedded in anisotropic and non-homogenous clay is still limited. 

 

 

Fig. 1. Problem definition of a rigid ring footing embedded on anisotropic and                        

heterogeneous clays. 

Multivariate adaptive regression splines (MARS), a part of machine learning, has 

become an increasingly popular approach in various fields such as construction man-

agement, building materials, and geotechnical analysis. However, there is a lack of re-

search on using MARS for predicting the bearing capacity of ring foundations in ani-

sotropic and non-homogeneous clay. 

The new equation for determining the bearing capacity factor of ring footings em-

bedded in anisotropic and non-homogeneous clays is constructed using the MARS 

model in this study. The bearing capacity is examined by considering the dimensionless 

bearing capacity factor and several input variables, including inner and outer radius, 
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embedded depth, an increase of shear strength gradient, and three undrained shear 

strengths. 

2 Problem definition 

The problem of a ring footing embedded in anisotropic and non-homogeneous clays 

is depicted in Figure 1. The rigid ring footing, defined by an inner radius ri, outer radius 

ro, and an embedded depth D, experiences a uniform pressure (q) on its rough interface 

with the soil. The circular shape of the footing is reasonable for the axisymmetric 

model. 

 

Fig. 2. Numerical model of a rigid ring footing. 

The soil in this study is considered weightless to ignore the effect of unit weight on 

undrained bearing capacity results. Also, it is assumed to be perfectly plastic following 

the AUS failure criterion. The model considers three anisotropic undrained shear 

strengths, obtained from tri-axial compression (suTC), tri-axial extension (suTE), and di-

rect simple shear (suDSS). These parameters are normalized using the re = suTE/suTC and              

rs = suDSS/suTC ratios, and their relationship rs=2re/(1+re), which is proposed by Krab-

benhoft and Lyamin [21] and Krabbenhoft et al [22]. Krabbenhoft et al. [22] showed 

that re value is from 0.5 to 1, and Fig. 3 illustrates the effect of this parameter on the 
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yield surface of the AUS failure criterion. When re = 1, meaning that suTC = suTE = suDSS, 

the AUS failure criterion [22] turns into the Tresca failure criterion. 

 

Fig. 3. Generalized Tresca surface used in the Anisotropic Undrained Shear (AUS) failure cri-

terion (Krabbenhoft and Lyamin 2015; Krabbenhøft et al. 2019). 

The non-homogeneous characteristics of clays are described by three undrained 

shear strengths with increasing depth, as shown in Eqs. (1-3). 

 0( ) = +uTC uTC zs z s   (1) 

 0( ) = +uTE u eTEz r zs s   (2) 

 0( ) = +uDSS u sDSSz r zs s   (3) 

where suTC0, suTE0, and suDSS0 are shear strength values at the ground surface and 

 presents the increasing of shear strength with depth z. Furthermore, q is a linear gra-

dient of undrained shear strength. The value of q can be determined through tests such 

as vane shear or CPT. 

Butterfield's dimensionless approach [38] is used to reduce the number of input pa-

rameters, and four critical dimensionless inputs are investigated: ri/ro, D/ro, re, and 

m=ro/suTC0. 
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Equation (4) expresses the bearing capacity of ring footings N in anisotropic and 

non-homogeneous clays, with the parameters ri/ro, D/ro, re, and ro/suTC0 corresponding 

to the geometry of the ring foundation, the embedded depth ratio, the anisotropic 

strength ratio, and the non-homogeneous behavior of the soil, respectively. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y /suTC 

z /suTC x /suTC 

re = suTE/suTC = 1  

0.75  

0.5  



5 

3 Methodology 

3.1 Multivariate Adaptive Regression Splines (MARS) model 

Recently, MARS has been used to analyze input parameter sensitivity in the settle-

ment of caisson foundation [39], determine the penetration resistance of a spherical 

penetrometer in clays [40], and solve problems related to lateral displacement of D-

wall in excavation and tunneling [41].  

MARS model divides data into groups. The boundaries of each group are determined 

by Knots, using an adaptive regression algorithm, and within each group, a linear re-

gression model is implemented. The regression lines are connected by Knot and ex-

pressed by basic functions described in Eq (5). 

 
if

BF max (0, )
0 otherwise

− 
= − = 



x t x t
x t  (5) 

where t is a Knot value and x is an input variable. 

 

Fig. 4.  The idea of MARS model. 

It is described in Fig. 5 that MARS algorithm has two main steps. Firstly, it generates 

many basic functions for the data and then deletes the least effective terms, using a 

pruning algorithm based on Generalized Cross validation (GCV) [42,43]. Then, it cre-

ates an optimal model that can show the nonlinear relationship between input and out-

put variables. 

The MARS model combines basic linear functions (BFs) to find the equation that 

represents the relationship between input and output variables, using Eq. (6). The equa-

tion contains a constant a0, N number of BFs, gn (the nthBF), and an (nth coefficient of 

gn). The accuracy of the MARS model can be enhanced by adding more data sections 

or basic functions [44-47]. 
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Fig. 5. Two main steps of MARS algorithm. 

3.2 Data collection 

Previous studies on ring foundation issues and stability analysis in anisotropic clays, 

such as Lee et al., Remadna, and Lai et al., are the sources of the collected datasets. The 

datasets comprise 720 investigated cases, covering various combinations of dimension-

less input parameters: ri/ro=0, 0.25, 0.33, 0.5 and 0.75, D/ro=0, 0.5, 1 and 2, re=0.5, 0.6, 

0.7, 0.8, 0.9 and 1, and ro/suTC0= 0, 1, 2.5, 5, 10 and 15. The input variables and output 

stability number of all cases were used as training data for the MARS model. 

4 Analysis results and new equation 

In this research, the MARS model's performance is evaluated by varying the number 

of BFs and assessing the Root Mean Squared Error (RMSE) and coefficient of deter-

mination (R2 value) as statistical measures. The R2 ranges from 0 to 1, and the closer 

this value is to 1, the better the agreement between the prediction and the target value 

is. Conversely, an R2 value closer to 0 indicates the opposite. Additionally, the accu-

racy of the MARS models is also analyzed using the Root Mean Squared Error 

(RMSE), which measures the error between the prediction and target value. Specifi-

cally, a smaller RMSE value indicates a higher accuracy of the model, as determined 

by the equation provided: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦′

𝑖
− 𝑦𝑖)

2𝑛
𝑖=1  (7) 

where n is the number of samples, and (𝑦′
𝑖
− 𝑦𝑖) is the result of the prediction minus 

the target.  
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Fig. 6. The variation of RMSE and R2 due to the changing of the number of BF 

To begin with, it is illustrated in Fig. 6 that the number of basic functions has an 

effect on the values of RMSE and R2. When the number of basic functions increases, 

the RMSE reduces, and R2 approaches 1. Besides, the RMSE and R2 stabilize when the 

number of basic functions is 35. Therefore, the MARS model with 35 BFs is utilized 

for further analysis. 

 

Fig. 7. The comparison between bearing capacity N from the proposed equation and FEA. 

Finally, the relationship between the bearing capacity N and input variables is ex-

pressed by a new equation in Eq. 8, with the basic function forms listed in Table 1. To 

verify the proposed equation's accuracy, a comparison between predicted and previous 

research numbers is performed, as shown in Fig. 7. The results reveal a strong agree-

ment between them, indicating that the proposed equation can be utilized to determine 
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the bearing capacity number of ring foundations in anisotropic and heterogeneous clays 

while considering a set of parameters above. Note that the proposed equation is an ap-

proximation with respect to the parameter values within the investigated range, as de-

tailed in part 3.2, so the results may be unreliable for input values outside the specified 

range. 

N = 5.16394 – 2.2991 × BF1 + 5.82133 × BF2 + 5.3844 × BF3 + 0.0197118 × BF4 – 

0.272858 × BF5 – 0.017462 × BF6 + 0.678281 × BF7 + 1.66449 × BF9 – 0.455259 × 

BF11 + 1.0747 × BF12 – 2.204 × BF13 + 0.603792 × BF14 – 0.93508 × BF15 – 

1.31844 × BF16 – 7.65449 × BF17 + 1.86525 × BF18 + 0.0411758 × BF19 – 2.97063 

× BF20 + 0.903993 × BF21 + 4.39949 × BF22 – 1.16772 × BF23 – 0.640157 × BF24 

– 2.18055 × BF26 + 0.550908 × BF28 + 0.484107 × BF29 – 1.64164 × BF32 + 3.19047 

× BF33 + 6.84792 × BF34 – 0.45469 × BF35 (8) 

Table 1. New equation and its basic functions 

BF Equation BF Equation 

BF1   max (0, ri/ro – 0.33) BF18  max (0, 0.7 – re) × BF2 

BF2  max (0, 0.33 –ri/ro) BF19  max (0, m – 1) × BF2 

BF3  max (0, re – 0.5) BF20  max (0, 1 – m) × BF2 

BF4  max (0, m – 2.5) BF21  max (0, D/ro – 0.5) × BF20 

BF5  max (0, 2.5 – m) BF22  max (0, 0.5 – D/ro) × BF20 

BF6  max (0, D/ro – 0.5) × BF4 BF23  max (0, re – 0.5) × BF8 

BF7  max (0, 0.5 – D/ro) × BF4 BF24  max (0, D/ro – 0.5) × BF1 

BF8  max (0, ri/ro – 0.25) × BF7 BF25  max (0, 0.5 – D/ro) × BF1 

BF9   max (0, 0.25 – ri/ro`) × BF7 BF26  max (0, re – 0.7) × BF1 

BF10  max (0, D/ro – 0.5) × BF5 BF28  max (0, ri/ro – 0.5) × BF10 

BF11  max (0, 0.5 – D/ro) × BF5 BF29  max (0, 0.5 – ri/ro) × BF10 

BF12  max (0, ri/ro – 0.33) × BF11 BF31  max (0, 0.7 – re) 

BF13  max (0, 0.33 – ri/ro) × BF11 BF32  max (0, D/ro + 0.000000059604)× BF31 

BF14  max (0, re – 0.7) × BF7 BF33  max (0, ri/ro – 0.25) × BF32 

BF15  max (0, 0.7 – re) × BF7 BF34  max (0, 0.25 – ri/ro) × BF32 

BF16  max (0, re – 0.5) × BF11 BF35  max (0, m – 0) × BF25 

BF17  max (0, re – 0.7) × BF2     

5 Conclusion 

The determination of the bearing capacity N of ring foundation in anisotropic and 

heterogeneous clays has been proposed in this paper, utilizing a new equation based on 

MARS model. The output results are calculated from 7 designed parameters (ri, ro, D, 

suTC, suTE, suDSS, and ), which are transformed into four dimensionless input variables 

(ri/ro, D/ro, re, and m). The predicted values of N demonstrate a significant agreement 
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with the numerical results from previous studies. Additionally, the proposed equation 

has a potential practical application in predicting the capacity of ring foundations in 

anisotropic and heterogeneous clays. 
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