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Abstract. This paper presents the analysis of the dynamic behavior of the thin 

plate on the dynamic foundation subjected to moving loads. The stiffness of the 

foundation is considered variable. A numerical survey using the finite element 

method is applied to analyze the time-dependent dynamic equation of the plate. 

The numerical results describe the weakened foundation cases in practice and 

compare the difference between the dynamic and viscoelastic foundations. 

Keywords: dynamic foundation, variable stiffness foundation, thin plate, mov-
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1 Introduction 

The behavior of the plate on the foundation is a fundamental problem, widely studied 

and applied, especially in infrastructure engineering. Modeling of variable stiffness 

foundation under moving vehicle loads is a common problem in practice. When the 

road is under operation, the foundation has a great change, leading to the structure 

being easily damaged, causing unsafety in the process of movement, and loss of com-

fort during vehicle control. This usually happens in places where surface water levels 

often rise for a long time, the ground is soft soil, the design is not suitable, or the con-

struction is not met requirements. 

There are some articles that investigated the structures on elastic foundations with 

variable stiffness, typically recent studies such as: Free vibration analysis of beams on 

variable Winkler elastic foundation (constant, linear, and second order) by using the 

differential transform method [1]; Dynamic response to moving masses of rectangular 

plates with different boundary conditions and resting on variable Winkler foundation 

(change of value of the stiffness in each particular case) [2,3]; Analytical solution for 

the elastic bending of beams lying on a variable Winkler support (an inverse of a 

fourth order polynomial) [4]; An analytical solution for free vibration of elastically 

restrained Timoshenko beam on an arbitrary variable Winkler foundation and under 

axial load [5]; Analytical solution for the elastic bending of beams lying on a linearly 

variable Winkler support [6]; Dynamic response of plates resting on a fractional vis-

coelastic foundation and subjected to a moving load [7]; Vibration of orthotropic 

rectangular plates under the action of moving distributed masses and resting on a 

variable elastic Pasternak foundation with clamped end conditions [8]; Dynamic anal-
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ysis of railway track on variable foundation under harmonic moving load [9]; Dynam-

ic response of railway track resting on variable foundation using finite element meth-

od [10]; Development of an analytical method for calculating beams on a variable 

elastic Winkler foundation [11].  

However, the above studies have not clearly described the relationship between 

plate displacement and foundation stiffness when the stiffness changes and weakens. 

This paper will fully address the relationship to get an overall picture of the plate on 

an elastic foundation with variable stiffness subjected to moving loads. The elastic 

foundation is considered the dynamical foundation, a new foundation model devel-

oped recently [12–17]. The obtained numerical results will be compared with the 

viscoelastic foundation. From there, engineers have suitable options to strengthen, 

repair, and renovate the road sections with heterogeneous stiffness, which are weak-

ened during the exploitation process due to subjective and objective causes. 

 

2 Formulation 

From the classic plate theory, the partial differential equation for the deflection of a 

plate on a viscoelastic foundation subjected to a moving load as 

D (
∂4w

∂x4
+ 2

∂4w

∂x2 ∂y2
+

∂4w

∂y4
) + kf(x)w + (cp + cf)

∂w

∂t
+ (ρh + mf)

∂2w

∂t2

= F(x, y, t) 

(1) 

where w is the plate deflection in the direction of the normal which is satisfied the 

above (1); D is the plate stiffness; E is Young’s modulus; μ is Poisson’s ratio; kf is the 

foundation stiffness; cp and cf  are damping constants of the plate and the foundation; 

ρ and h are the density and the thickness of the plate; mf is the lumped mass of the 

foundation; t is the time variable; x and y are rectangular Cartesian coordinates in the 

plane of the plate; 𝐹(𝑥, 𝑦, 𝑡) is the loads and forces with (𝑥, 𝑦) coordinates with re-

spect to the time variable t acting on the plate resting on the dynamic foundation. 

With the viscoelastic foundation, mf is equal to 0. 

To solve (1), the finite element method is adopted. Based on the results of the 

study on the dynamic response of plates on elastic foundation to moving loads [1], the 

dynamic equation of the plate-foundation system is 

([𝑴𝒑] + [𝑴𝒇])𝒅̈ + ([𝑪𝒑] + [𝑪𝒇])𝒅̇ + ([𝑲𝒑] + [𝑲𝒇
𝒙])𝒅 = 𝑭 (2) 

Where ([𝑀𝑝] + [𝑀𝑓]) are the mass matrices, ([𝐶𝑝] + [𝐶𝑓]) are the damping matrices, 

and ([𝐾𝑝] + [𝐾𝑓
𝑥])  are the stiffness matrices of the plate and the foundation respec-

tively (in this case 𝑘𝑓(𝑥) is considered as a function with respect to variable x); F is 

the load vector; d is the complete displacement vector. 

From the theory of the finite element method for the plate bending element, let [𝑁] 
and [𝐵] be the shape function matrix and the gradient matrix, respectively, e is the 

plate bending element under consideration of minimum potential energy. The mass 
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matrix [𝑀𝑓], stiffness matrix [𝐾𝑓
𝑥], and damping matrix [𝐶𝑓] of the foundation are 

obtained. 

[𝑴𝒇] = ∫[𝑵]𝑻𝒎𝒇[𝑵]𝒅𝒙𝒅𝒚
𝒆

 (3) 

[𝑲𝒇
𝒙] = ∫[𝑵]𝑻𝒌𝒇(𝒙)[𝑵]𝒅𝒙𝒅𝒚

𝒆

 (4) 

[𝑪𝒇] = ∫[𝑵]𝑻𝒄𝒇[𝑵]𝒅𝒙𝒅𝒚
𝒆

 (5) 

The mass matrix [𝑀𝑝], the plate stiffness matrix [𝐾𝑝], the plate damping matrix [𝐶𝑝] 

of the plate are taken according to the above study [18], specifically the mass matrix 

and the stiffness matrix are given by 

[𝑴𝒑] = ∫[𝑵]𝑻𝝆𝒉[𝑵]𝒅𝒙𝒅𝒚
𝒆

 (6) 

[𝑲𝒑] = ∫[𝑩]𝑻[𝑫][𝑩]𝒅𝒙𝒅𝒚
𝒆

 (7) 

The plate damping matrix is used Rayleigh damping as 

[𝑪𝒑] = 𝜶[𝑴𝒑] + 𝜷[𝑲𝒑] (8) 

with 𝛼 and 𝛽 are determined by the first two modes through modal analysis. And the 

load vector is 

[𝑪𝒑] = 𝜶[𝑴𝒑] + 𝜷[𝑲𝒑] (9) 

From the above analysis steps, equation (2) can be solved by Newmark’s method. The 

problem can be considered with different boundary conditions. 

3 Numerical Investigation 

To implement numerical investigation and analysis, a computer program written in 

Python programming language [19] with open-source libraries including numpy [20], 

matplotlib [21], and openseespy [22] is used. 

 

3.1 Verification of the written computer program 

The numerical example from the program was compared with the study of M.-H. 

Huang and D. P. Thambiratnam [18] (see Fig. 1 and Fig. 2). 

This is shown that the computer program using the finite element method and dy-

namic analysis step by step is reliable. 
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Fig. 1. The results of [18] 

 

Fig. 2. The written computer program 

3.2 Numerical Analysis 

A simply supported LxB=100(m)x10(m) thin plate with thickness thk=0.3(m) resting 

on the dynamic foundation. The data for the plate and the load amplitude are given 

by: E=3.1x1010(N/m2), μ=0.25, ρ=2,440(kg/m3), damping ratio ξ=5(%), 

Kf=107(N/m3), Cf=100(Ns/m3), mf=1800(kg/m3), Pz=100(kN). 

The load moves along the center line and parallel to the long edge of the plate. It 

moves into the plate with an initial velocity of v=20(m/s) and this velocity remains 

constant. The direction of the load is perpendicular to the plate, and towards the plane 

of the plate. 

The foundation stiffness is analyzed with the following 7 cases: 

1) The foundation stiffness is constant. 

2) The foundation stiffness is constant but at positions 𝐿/4, 𝐿/2 and 3𝐿/4 

have 𝐾 = 0 with a length of 2m (the foundation is depressed). 
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3) The foundation stiffness decreases in steps from position 0 to 𝐿/2  and 

increases symmetrically from 𝐿/2 to 𝐿, at 𝐿/2 has 𝐾 = 0 with a length of 2m 

(the foundation is depressed). 

4) The foundation stiffness decreases linearly from position 0 to 𝐿/2 and 

increases symmetrically from 𝐿/2 to 𝐿, at 𝐿/2 has 𝐾 = 0  with a length of 2m 

(the foundation is depressed). 

5) The foundation stiffness has a decrease in polynomial of order 2 from 

position 0 to 𝐿/2 and increases symmetrically from 𝐿/2 to 𝐿, at 𝐿/2 has 𝐾 =
0  with a length of 2m (the foundation is depressed). 

6) The foundation has a stiffness 𝐾 = 0  (depressed at the joint) increasing 

in polynomial of order 2 from position 0 to 𝐿/2 and symmetrically decreasing 

from 𝐿/2 to 𝐿, at 𝐿/2 with a length of 2m, the foundation stiffness reaches the 

given K value. 

7) The foundation has a stiffness 𝐾 = 0  (depressed at the joint) and follows 

the law of sine function. 

The plate is divided with 100 elements in the longitudinal direction, and 10 ele-

ments in the horizontal direction (N=1,111 nodes) with a ratio of two-element sides of 

1:1 to achieve the best results. Then the stiffness of each spring is 

k=KfxLxB/N=9,000,900.1(N/m), and the damping coefficient is 

c=CfxLxB/N=90.01(Ns/m), the mass of each spring is mfxLxBxhf/N= 1,296.1296(kg) 

(hf is the affection of mass foundation, in this problem hf=80(cm)). 

The problem is analyzed to investigate the displacements at positions 𝑳/𝟒,
𝑳/𝟐, 𝟑𝑳/𝟒, and the displacement spectrum of the center line parallel to the long 

side of the plate. 

 

Case 1, the foundation stiffness is constant, 𝑘𝑓(𝑥) = 𝑘: 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 3 and Fig. 4. 

 

Fig. 3. Case 1 – Stiffness 
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Fig. 4. Case 1 – Displacement 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 1. 

Table 1. Case 1 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -5.022.10-4 (m) -5.033.10-4 (m) -5.033.10-4 (m) 

Viscoelastic -5.013.10-4 (m) -5.016.10-4 (m) -5.016.10-4 (m) 

Difference 0.18% 0.34% 0.34% 

 

Remark: with the foundation having constant stiffness, the plate displaces relative-

ly evenly under the effect of moving load. From the displacement spectrum with the 

initial speed of the load 𝑣 = 20(𝑚/𝑠), a non-zero acceleration at time 𝑡 = 0 is pro-

vided for the first element of the plate under load, and gradually even under the re-

sistance of the plate and the foundation. In practice, the transition position between 

the joint and the foundation is also a relatively easy position to damage. 

 

Case 2, the foundation stiffness is constant (𝑘𝑓(𝑥) = 𝑘) but at positions 𝐿/4, 𝐿/2 and 

3𝐿/4 have 𝐾 = 0 with a length of 2m (the foundation is depressed): 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 5 and Fig. 6. 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 2. 

Remark: in case the plate is placed on a discontinuous foundation, as in practice, 

the locations have a sudden depression. These are the locations that are easy to cause 
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damage to the plate if no timely and appropriate rectified measures are taken. From 

the displacement spectrum, we can see that at positions 𝐿/4, 𝐿/2 and 3𝐿/4, although 

the displacement increases significantly, the plate oscillation is relatively even be-

cause the plate elements in this position begin to oscillate when the load is moving 

close to. 

 

Fig. 5. Case 2 – Stiffness 

 

Fig. 6. Case 2 – Displacement 
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Table 2. Case 2 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -8.544.10-4 (m) -8.548.10-4 (m) -8.548.10-4 (m) 

Viscoelastic -8.435.10-4 (m) -8.439.10-4 (m) -8.439.10-4 (m) 

Difference 1.28% 1.28% 1.28% 

 

Case 3, the foundation stiffness decreases in steps from position 0 to 𝐿/2  and in-

creases symmetrically from 𝐿/2 to 𝐿, at 𝐿/2 has 𝐾 = 0 with a length of 2m (the foun-

dation is depressed): 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 7 and Fig. 8. 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 3. 

Table 3. Case 3 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -6.569.10-4 (m) -17.014.10-4 (m) -6.564.10-4 (m) 

Viscoelastic -6.527.10-4 (m) -16.642.10-4 (m) -6.535.10-4 (m) 

Difference 0.64% 2.19% 0.44% 

 

Remark: the weakening of the foundation stiffness occurs quite often in practice 

due to the use of different materials. In this case, the stiffness is reduced to 0. From 

the displacement spectrum and the plate displacement plane, it shows that although 

the position 𝐿/2 has 𝐾 = 0, the displacement is wider than in Case 2 above. 

 

Fig. 7. Case 3 – Stiffness 
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Fig. 8. Case 3 – Displacement 

Case 4, the foundation stiffness decreases linearly from position 0 to 𝐿/2  (𝑘𝑓(𝑥) =

𝑘 −
𝑘

49

100
𝐿
x) and increases symmetrically from 𝐿/2 to 𝐿 (𝑘𝑓(𝑥) =

−51

49
𝑘 +

𝑘
49

100
𝐿

𝑥), at 𝐿/2 

has 𝐾 = 0  with a length of 2m (the foundation is depressed): 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 9 and Fig. 10. 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 4. 

Table 4. Case 4 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -7.281.10-4 (m) -36.653.10-4 (m) -7.296.10-4 (m) 

Viscoelastic -7.258.10-4 (m) -34.517.10-4 (m) -7.282.10-4 (m) 

Difference 0.32% 5.83% 0.19% 

 

Remark: This is the case of a weakening foundation described linearly, quite close 

to the phenomenon of water flooding in the foundation and seeping upwards to some 

extent. In this case, the analysis brings the weakened foundation down to a value of 

𝐾 = 0. From the displacement spectrum and the plate displacement plane, the dis-

placement at the position with 𝐾 = 0 is wider than that of Case 3 above. 
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Fig. 9. Case 4 – Stiffness 

 

Fig. 10. Case 4 – Displacement 

Case 5, the foundation stiffness has a decrease in polynomial of order 2 from position 

0 to 𝐿/2 (𝑘𝑓(𝑥) = 𝑘 −
9245

2499

𝑘

𝐿
𝑥 +

9500

2499

𝑘

𝐿2 𝑥2) and increases symmetrically from 𝐿/2 to 

𝐿 (𝑘𝑓(𝑥) =
44

49
𝑘 −

9245

2499

𝑘

𝐿
𝑥 +

9500

2499

𝑘

𝐿2 𝑥2), at 𝐿/2 has 𝐾 = 0  with a length of 2m (the 

foundation is depressed): 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 11 and Fig. 12. 
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Fig. 11. Case 5 – Stiffness 

 

Fig. 12. Case 5 – Displacement 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 5. 

Remark: like Case 4, but the weakening foundation is described as decreasing by a 

polynomial of order 2. From the displacement spectrum and the plate displacement 

plane, the displacement at 𝐾 = 0 is wider compared to Case 4. This case causes the 

largest displacement at the center of the plate compared to the other cases. 
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Table 5. Case 5 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -10.027.10-4 (m) -101.001.10-4 (m) -10.107.10-4 (m) 

Viscoelastic -10.035.10-4 (m) -86.209.10-4 (m) -10.090.10-4 (m) 

Difference 0.08% 14.65% 0.17% 

 

Case 6, the foundation has a stiffness 𝐾 = 0  (depressed at the joint) increasing in 

polynomial of order 2 from position 0 to 𝐿/2 (𝑘𝑓(𝑥) =
9755

2499

𝑘

𝐿
𝑥 −

9500

2499

𝑘

𝐿2 𝑥2), and 

symmetrically decreasing from 𝐿/2 to 𝐿 (𝑘𝑓(𝑥) =
5

49
𝑘 +

9245

2499

𝑘

𝐿
𝑥 −

9500

2499

𝑘

𝐿2 𝑥2), at 𝐿/2 

with a length of 2m, the foundation stiffness reaches the given K value: 

Table 6. Case 6 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -5.908.10-4 (m) -5.037.10-4 (m) -5.9.10-4 (m) 

Viscoelastic -5.884.10-4 (m) -5.019.10-4 (m) -5.876.10-4 (m) 

Difference 0.41% 0.36% 0.41% 

 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 13 and Fig. 14. 

 

 

Fig. 13. Case 6 – Stiffness 
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Fig. 14. Case 6 – Displacement 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 6. 

Remark: this is a relatively common case in the practice of plate-on-foundation 

structure. As described in Case 1, at time t=0 the load is in contact with the plate ele-

ment at high velocity, giving the plate element a non-zero acceleration along with the 

mass of the plate-foundation element causing the force inertia and producing a rela-

tively large displacement at the initial instant. In addition, the foundation at the transi-

tion position between the joint and the plate is depressed (K=0) which can easily 

cause damage to the plate structure. In practice, we can observe the transitional posi-

tions between the abutment and the road, which are often damaged leading to the 

vehicle moving not smoothly. Besides, from the displacement spectrum and dis-

placement plane, we can see that the location due to the load acting when entering the 

plate will be larger due to the dynamic coefficient when compared to the location due 

to the load acting when leaving the plate. 

 

Case 7, the foundation has a stiffness 𝐾 = 0  (depressed at the joint) and follows the 

law of sine function (𝑘𝑓(𝑥) =
−𝑘

2
𝑠𝑖𝑛 (

−8𝜋

𝐿
𝑥 +

𝜋

2
) +

𝑘

2
): 

The foundation stiffness and the displacement of the dynamic foundation are 

shown in Fig. 15 and Fig. 16. 

The comparison of displacement between the dynamic foundation and the viscoe-

lastic foundation is shown in Table 7. 
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Table 7. Case 7 – Displacement 

Foundation model Displacement at L/4 Displacement at L/2 Displacement at 3L/4 

Dynamic -19.723.10-4 (m) -19.706.10-4 (m) -19.706.10-4 (m) 

Viscoelastic -19.056.10-4 (m) -19.062.10-4 (m) -19.063.10-4 (m) 

Difference 3.38% 3.27% 3.26% 

 

Remark: this is the general case in practice. This case can be considered as includ-

ing all the above cases. 

 

Fig. 15. Case 7 – Stiffness 

 

Fig. 16. Case 7 – Displacement 
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Discussion 

From the above cases, the dynamic foundation model in the case of a weakening 

foundation will give a significantly larger displacement compared to the massless 

foundation model (in this case, the viscoelastic foundation is considered). 

In addition, if a correlative comparison is made between the foundation problem 

with the constant stiffness coefficient, that is the foundation model commonly found 

in design calculations, and the analyzed cases, the results will be correlated as shown 

in Table 8. 

Table 8. Correlation between constant foundation stiffness and other cases 

 L/4 (10-4m) L/2 (10-4m) 3L/4 (10-4m) 

Case 1 -5.022 -5.033 -5.033 

Case 2  70% 70% 70% 

Case 3 31% 239% 31% 

Case 4 45% 630% 45% 

Case 5 100% 1911% 101% 

Case 6 18% 0% 17% 

Case 7 293% 292% 292% 

 

With the analysis of variable foundation stiffness, that is the foundation changes 

and leads to weakening during the operation, all show larger displacements than the 

foundation with constant stiffness. Therefore, in the studies that take the foundation 

with constant stiffness and masslessness, this issue should also be considered. 

4 Conclusion 

The foundation needs to be uniform so that the plate-on-foundation structure can 

work at its best, we can use locally available and suitable materials, no need to search 

for too good materials to avoid waste. The need to apply design methods as well as 

construction techniques to avoid the depression of the foundation stiffness, and the 

settlement of the foundation due to seepage, flooding, and water flow. So, these dam-

ages could be difficult to repair. 

The position of transition from the joint to the foundation is a "weak" position in 

practice, this is the part that should be reinforced compared to the design calculation. 

The locations where the foundation is depressed, or the stiffness is reduced, should 

be rectified early with appropriate solutions to minimize the damage to the structure 

and ensure traffic safety and the comfort of vehicle movement. 
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The dynamic foundation model gives analytical results closer to reality than the 

foundation models that do not consider mass. 

This article has analyzed plate behavior on a dynamic foundation with variable 

stiffness, but these analyzes are still very basic, many issues need to be further inves-

tigated, such as variable load velocity, shock force when the load is not continuously 

in contact with the surface of the plate, the multi-layer foundation, the braking force, 

multi-parameter foundation. 

References 

1. Alev Kacar, H.T.T., Kaya, M.O.: Free Vibration Analysis of Beams on Variable Winkler 

Elastic Foundation by Using the Differential Transform Method. Math. Comput. Appl. 16, 

773–783 (2011). 

2. Oni, S.T., Awodola, T.O.: Dynamic behaviour under moving concentrated masses of simp-

ly supported rectangular plates resting on variable Winkler elastic foundation. Lat. Am. J. 

Solids Struct. 8, 373–392 (2011). 

3. Awodola, T.O., T, S.: Oni: Dynamic response to moving masses of rectangular plates with 

general boundary conditions and resting on variable winkler foundation. Lat. Am. J. Solids 

Struct. 10, 301–322 (2013). 

4. Froio, D., Rizzi, E.: Analytical solution for the elastic bending of beams lying on a varia-

ble Winkler support. Springer-Verlag Wien (2015). 

5. Ghannadiasl, A., Mofid, M.: An Analytical Solution for Free Vibration of Elastically Re-

strained Timoshenko Beam on an Arbitrary Variable Winkler Foundation and Under Axial 

Load. Lat. Am. J. Solids Struct. 12, 2417–2438 (2015). 

6. Froio, D., Rizzi, E.: Analytical solution for the elastic bending of beams lying on a linearly 

variable Winkler support. Int. J. Mech. Sci. (2017). 

7. Praharaj, R.K., Datta, N.: Dynamic response of plates resting on a fractional viscoelastic 

foundation and subjected to a moving load. Mech. Based Des. Struct. Mach. 1–16 (2020). 

https://doi.org/10.1080/15397734.2020.1776621. 

8. T.O, A., A.S, A.: Vibration of Orthotropic Rectangular Plates Under the Action of Moving 

Distributed Masses and Resting on a Variable Elastic Pasternak Foundation with Clamped 

End Conditions. Int. J. Adv. Eng. Res. Sci. IJAERS. (2021). 

9. Phadke, H.D., Jaiswal, O.R.: Dynamic analysis of railway track on variable foundation un-

der harmonic moving load. J. Rail Rapid Transit. (2021). 

10. Phadke, H.D., Jaiswal, O.R.: Dynamic Response of Railway Track Resting on Variable 

Foundation Using Finite Element Method. Arab. J. Sci. Eng. (2021). 

11. Yu Krutii, M.S., Petrash, S., Yezhov, M.: Development of an analytical method for calcu-

lating beams on a variable elastic Winkler foundation. Materials Science and Engineering, 

IOP Conference Series (2021). 

12. Nguyen, P.T., Pham, T.D., Hoang, H.P.: A dynamic foundation model for the analysis of 

plates on foundation to a moving oscillator. Struct. Eng. Mech. 59, 1019–1035 (2016). 

https://doi.org/10.12989/sem.2016.59.6.1019. 

13. Nguyen, T.P., Pham, D.T., Hoang, P.H.: A New Foundation Model for Dynamic Analysis 

of Beams on Nonlinear Foundation Subjected to a Moving Mass. Procedia Eng. 142, 166–

173 (2016). https://doi.org/10.1016/j.proeng.2016.02.028. 

14. Nguyen, P.T., Pham, T.D., Hoang, H.P.: A Nonlinear Dynamic Foundation Model for Dy-

namic Response of Track-Train Interaction. Shock Vib. 2020, 1–10 (2020). 

https://doi.org/10.1155/2020/5347082. 



17 

15. Nguyen, T.P., Pham, D.T., Hoang, P.H.: Effects of foundation mass on dynamic responses 

of beams subjected to moving oscillators. J. Vibroengineering. 22, 280–297 (2020). 

https://doi.org/10.21595/jve.2019.20729. 

16. Pham, D.T., Hoang, P.H., Nguyen, T.P.: Experiments on influence of foundation mass on 

dynamic characteristic of structures. Struct. Eng. Mech. 65, 505–512 (2018). 

17. Phuoc, N.T., Trung, P.D.: The influence of mass of two-parameter elastic foundation on 

dynamic responses of beams subjected to a moving mass. KSCE J. Civ. Eng. 20, 2842–

2848 (2016). https://doi.org/10.1007/s12205-016-0167-4 

18. Huang, M.-H., P, D.: Thambiratnam: Dynamic Response of Plates on Elastic Foundation 

to Moving Loads. J. Eng. Mech. (2002) 

19. Rossum, G. van, Drake, F.L.: The Python language reference. Python Software Founda-

tion, Hampton, NH (2010) 

20. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, 

D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerk-

wijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-

Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, 

T.E.: Array programming with NumPy. Nature. 585, 357–362 (2020). 

https://doi.org/10.1038/s41586-020-2649-2 

21. Hunter, J.D.: Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007). 

https://doi.org/10.1109/MCSE.2007.55 

22. McKenna, F., Scott, M.H., Fenves, G.L.: Nonlinear Finite-Element Analysis Software Ar-

chitecture Using Object Composition. J. Comput. Civ. Eng. 24, 95–107 (2010). 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002 

 

 


