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Abstract. Today, the problem of system identification (SI), which 

includes estimating the dynamic parameters of a complex mechanical 

system, is an interesting research topic. Previous studies have suc-

ceeded in analyzing vibration signals to extract some features to di-

agnose the condition, which is a special method for identifying ball 

screw feed drive systems (BFDS). However, these methods require 

measurement techniques with specialized instruments and complex 

data processing methods, causing difficulties in their widespread ap-

plication in practice. This paper presents the application of an un-

scented Kalman filter (UKF) to estimate the vibrational responses of 

BFDS. First, a dynamic modeling method for BFDS is proposed to 

determine dynamic parameters such as mass/inertia, stiffness, and 

damping. Then, the vibration responses, including displacement, ve-

locity, and acceleration, will be calculated and numerically simulated 

by the Runge-Kutta 4th order (RK4th). This vibration response is 

also the input data for estimating states and dynamic parameters us-

ing UKF. The combination of the mathematical model and the pow-

erful unscented transformation based on the Kalman filter will allow 

us to estimate the vibration responses and the dynamic parameters of 

the system accurately. The feasibility of the UKF method was evalu-

ated by the correlation between the state estimation results and the 

vibration responses of the RK4th. Besides that, it is possible to eval-

uate the accuracy of UKF through the error between the data input 

and the estimated results of the dynamic parameters of BFDS. The 

preliminary results of this paper demonstrate that the UKF method 

can be applied to system identification and monitoring of the status 

of the BFDS system. This approach has the potential to improve the 

safety and reliability of BFDS systems, as it allows for real-time 

monitoring and early detection of any potential issues. Further re-

search is needed to fully validate the effectiveness of this method in 

practical applications. 
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1 Introduction. 

Several systems are used to convert the motor's rotary motion into linear motion 

(LM), such as belt drives, rack and pinion drives, and ball-nut-screw drives (BFDS). In 

modern milling machines, accuracy is dictated by the high rigidity and efficiency of the 

drive system. Therefore, the BFDS system is judged to be the most suitable for use in 

computer numerical control (CNC) machine tools [1]. During operation, the vibration 

of the BFDS is the main factor affecting the product's quality, performance, and pro-

cessing time. Mechanical backlash or geometrical error is considered one of the com-

mon causes affecting the performance of BFDS. Rotating parts in CNC milling ma-

chines are frequently used, especially in operations that convert rotary motion from the 

motor to translating motion of the working table via BFDS [2]. Due to the continuous 

operation under high load and high-intensity conditions, the BFDS inevitably wears and 

fatigues [3], thereby causing a decrease in the stiffness of the transmission system, es-

pecially the ball screws. In the last few years, some methods of surveying and assessing 

the condition based on vibration have been studied and applied to ensure the stable 

operation of the machine. 

In order to investigate and evaluate the operating status of the CNC machine, recent 

studies have conducted dynamic modeling for the BFDS system by various methods, 

such as the lumped parameter method, the finite element method, and the hybrid 

method [4]. Based on the study during operation and monitoring the machine's condi-

tion before and after the loss of accuracy, several assumptions are made to simplify the 

dynamic modeling. Based on the study during operation and monitoring the machine's 

condition before and after the loss of accuracy, several assumptions are made to sim-

plify the dynamic modeling. The lumped parameter method is evaluated as simple for 

easily modeling a dynamic model based on the generalized coordinates and applying 

numerical methods to solve it quickly [5]–[7]. Many scientific papers have processed 

the finite element method (FEM) to consider the dynamic behavior of BSFS in as much 

detail as possible. This method requires that the dynamic parameters of the system be 

calculated and determined precisely. The joints and stiffness of the dynamic joints are 

also considered [8]–[10]. A hybrid modeling approach that uses a combination of 

lumped method and dynamic parameters to investigate the vibration response of a ball 

screw, where the screw shaft is considered as a Timoshenko beam model including 

torsional, axial, and flexural [11]–[15]. This method can comprehensively reflect the 

vibration states, including free and forced vibrations of BFDS, when the position of the 

table changes with time. Besides, the dynamic parameters affecting the system vibration 

can be approximated, helping to solve the vibration problem accurately and quickly. 

Nowadays, research on monitoring and predicting the health condition of the ma-

chine has enormously important contributions to make in establishing operation and 

maintenance procedures. The purpose is to improve safety for machining and product 

manufacturing. It is possible to monitor and predict the condition or failure of the ma-

chine based on the data from the vibration signal during operation. The modal analysis 

includes experimental mode analysis (EMA) and operational mode analysis (OMA), 

which is an analytical method based on vibration theory to determine the modal param-

eters of the complex mechanical system as BFDS. This method allows us to determine 

the system's dynamic parameters, including the eigenvalues, modal frequency, damping 

ratio, and modal geometry [16]. However, BFDS has a large displacement and fast-
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changing speed under actual working conditions, which may completely differ from the 

theoretical conditions. According to the investigation of the ball screw vibration re-

sponses [17], it can be considered that there are two main vibration modes: axial mode 

and rotation mode. That makes it difficult for modal analysis methods to install accel-

erometers. In addition, the collected measurement signal can only determine the vibra-

tion responses in the axial directions. Still, it cannot determine the response of the tor-

sion vibration mode, leading to certain limitations. 

Kalman filter (KF) is a tool that scientists have been interested in, researched, and 

strongly developed in recent years to estimate the state and dynamical parameters of 

the mechanical system. KF has made important contributions to the application of high-

tech fields such as aerospace, civil engineering, and, most recently, industrial engineer-

ing [18]. Nowadays, KF has been strongly developed, which can be mentioned as the 

Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF), which are com-

monly used for the determination of non-linear mechanical systems [19]. In this study, 

we propose the application of UKF to estimate the vibration response and the dynamic 

parameters of BFDS under the excitation force. First, BFDS has modeled stiffness, as 

a mechanical system with finite degrees of freedom, theoretically determining dynamic 

parameters such as mass/inertia, stiffness, and viscous damping. A hybrid dynamics 

model can investigate ball screw vibration responses; dynamic parameters such as mass 

or inertia, and damping are lumped parameter models, while the ball screw and mech-

anism have equivalent stiffness values. Based on vibration theory, solving the eigen-

value problem allows determining the eigenvalues, natural frequency, vibration fre-

quency, and eigenvector in the modes of BFDS. The Runge-Kutta 4th order method is 

used with data input as dynamic parameters and excitation force for numerical simula-

tion of vibration responses such as displacement, velocity, and acceleration at general-

ized coordinates. The response results from RK4th will be input into the UKF state 

estimation process. Moreover, UKF is superior when estimating dynamic parameters 

such as mass/inertia, stiffness, and damping. Finally, UFK is used to estimate the dy-

namic parameters of the BFDS model and compare the results of that estimated state. 

The results show that the modeling method for BFDS can be evaluated as suitable for 

the computational-numerical simulation model using RK4th and UKF. Correlations and 

percentage deviations between the estimated results were evaluated to demonstrate the 

effectiveness and superiority of the UKF method. The results of this paper will be the 

premise for further studies to apply the UKF to the problem of identifying systems for 

BFDS.  

2 Mathematic and method. 

2.1 Ball screw feed drive system. 

Today, BFDS is widely used for machines that need to ensure position accuracy be-

cause of its high load-carrying capacity and rigidity. BFDS combines moving compo-

nents such as a motor, ball screw, bearings, linear motion guideways, and table. In par-

ticular, the accuracy of BFDS is mainly determined by the condition of the ball screw, 

because this is a dynamic load-bearing part that converts the motor's rotation motion 

into the translating motion. The workpiece load and the cutting force act directly on the 
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machine table, which is transmitted to the linear guide system and the ball screw nut 

fastened to the table. Two thrust ball bearings are rigidly attached to the base of the 

machine with the task of supporting - blocking, and only allowing the screw shaft to 

rotate to transmit torque from the motor. The relationship between the generalized co-

ordinates in the dynamic modeling diagram of BFDS is shown in Fig. 1. 

  
Fig. 1. The BFDS dynamic modelling [5]. 

In the dynamic model of the proposed BFDS, the dynamic parameters are as follows: 

mass/inertia, ball screw-ball nut stiffness and damping of the components. In general, 

the equations of motion are performed as a matrix called Lagrange's equation, which 

can be represented as follows Eq.(1) 

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} = {𝐹} (1) 

In which, [𝑀] is mass matrix, [𝐶] is damping matrix, [𝐾] is stiffness matrix, and {𝑥} 
is generalized coordinate vector. With a four-degree-of-freedom system (4-dofs) of 

BFDS shown in Fig.1, the dynamic equations can be expressed in terms of Eq. (2) as 

follows: 

[

𝑀𝑡 0 0 0
0 𝑀𝑏 0 0
0 0 𝐽𝑏 0
0 0 0 𝐽𝑚

]

[
 
 
 
 
�̈�𝑡
�̈�𝑏
�̈�𝑏
�̈�𝑚]
 
 
 
 

+ [

𝐵𝑡 0 0 0
0 𝐵𝑏 0 0
0 0 𝑄𝑏 0
0 0 0 𝑄𝑚

]

[
 
 
 
 
�̇�𝑡
�̇�𝑏
�̇�𝑏
�̇�𝑚]
 
 
 
 

 

 +[

𝐾1 −𝐾1 −𝛽𝐾1 0
−𝐾1 𝐾2 𝛽𝐾1 0
−𝛽𝐾1 𝛽𝐾1 𝐾3 −𝐾4
0 0 −𝐾4 𝐾4

] [

𝑋𝑡
𝑋𝑏
𝛳𝑏
𝛳𝑚

] = [

0
0
0
𝑇𝑚

] (2) 

The stiffness matrix [𝐾] of the ball screw includes the stiffness of the ball screw nut 

(𝐾1) and the stiffness of the screw shaft. The hardness of a ball screw nut (𝐾1) depends 

on the degree of preload (P) and can be determined based on the manufacturer's cata-

logue stiffness. The stiffness of the screw shaft is divided into equivalent axial stiffness 

(𝐾2) and equivalent torsional stiffness (𝐾3) and torsional stiffness of the screw shaft 

(𝐾4). The stiffness of the lead screw in this dynamic model depends on the physical 

geometry and material properties. Table. 1 shows the dynamic parameters of BFDS. 

 

 



5 

Table. 1. The dynamic parameters of BFDS 

Symbol Dynamic parameters Value 

𝑀𝑡  Mass of Working table 15 (kg) 

𝑀𝑏  Mass of the ball screw 2.56 (kg) 

𝐽𝑚  Inertial moment of the motor 1.73 × 10−5 (kg.m2) 

𝐽𝑏  Inertial moment of the ball screw 1.4475 × 10−4 (kg.m2) 

𝐾1  The ball screw nut stiffness 1.374 × 108 (N/m) 
𝐾2  The equivalent axial stiffness of ball screws 1.874 × 108 (N/m) 
𝐾3  The equivalent torsional stiffness of ball screws 1153.93 (Nm/rad) 
𝐾4  The torsional stiffness of ball screws 717 (Nm/rad) 

   The axial displacement of the ball screw shaft caused 

by rotation 
2.55 × 10−3 (Nm/rad) 

𝐵𝑡   The viscous damping coefficient of the guideway of 

the working table 
1 (𝑁𝑠/𝑚) 

𝐵𝑏   The viscous damping coefficient of the supporting 

bearing of the ball screw 
1 (𝑁𝑠/𝑚) 

𝑄𝑚  The rotational viscous damping coefficient of the mo-

tor 
0.002 (𝑁𝑚𝑠/𝑟𝑎𝑑) 

𝑄𝑏   The rotational viscous damping coefficient of the 

support bearing 
0.002 (𝑁𝑚𝑠/𝑟𝑎𝑑) 

𝑇𝑚  The motor torque 0 (N.m) 

It is found that the position of the working table also affects the axial stiffness of the 

screw shaft (𝐾2), which means that the values (𝐾2) of the matrix [K] change depending 

on the position changing of the working table during operation. Therefore, for the ei-

genvalue problem, it is generally assumed that no damping or excitation force is acting 

on the system. So the eigenvalues and eigenvectors will change as the stiffness (𝐾2) 
changes. The eigenvalues problem, which Eq. (3) is called the characteristic equation: 

 |[𝐾] − [𝑀]| = 0 (3) 

Where  = 𝜔2,  defined as the eigenvalue, ω is defined as the angular frequency of 

the system. The solution to this problem would be to provide four natural frequencies 

𝑓𝑛 in the four corresponding vibration modes. In the case of BFDS in the stationary 

state, the dynamic parameter values do not change, and the eigenvalue problem allows 

quick investigation of values such as natural frequencies. However, when investigating 

the vibrational response of the system muscle under the action of the excitation force, 

we need another, more powerful numerical method. 

2.2 Numerical method Runge-Kutta 4th order (RK4th) 

 In a multi-degree-of-freedom mechanical system, the matrix equation of motion 

eq.(1) is used to describe the acceleration vector that becomes: 

 {�̈�(𝑡)} = [𝑀]−1({𝐹(𝑡)} − [𝐶]{�̇�(𝑡)} − [𝐾]{𝑥(𝑡)}) (4) 

By considering displacement as well as velocity as an unknown variable, a new vec-

tor equation is expressed as: {𝑋(𝑡)} = {
𝑥(𝑡)

�̇�(𝑡)
} and there is: 

 {�̇�(𝑡)} = {
�̇�(𝑡)

�̈�(𝑡)
} = {

�̇�(𝑡)

[𝑀]−1({𝐹(𝑡)} − [𝐶]{�̇�(𝑡)} − [𝐾]{𝑥(𝑡)})
} (5) 

Equation. (5) can also be rearranged: 
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 {�̇�(𝑡)} = [
[0] [𝐼]

[𝑀]−1[𝐾] −[𝑀]−1[𝐶]
] {
𝑥(𝑡)

�̇�(𝑡)
} + {

0
[𝑀]−1{𝐹(𝑡)}

} (6) 

with: {�̇�(𝑡)} = 𝑓(𝑋, 𝑡) 
Which: 

 𝑓(𝑋, 𝑡) = [𝐴]𝑋(𝑡) + �̃�(𝑡) (7) 

 [𝐴] = [
[0] [𝐼]

[𝑀]−1[𝐾] −[𝑀]−1[𝐶]
] (8) 

 �̃�(𝑡) = {
0

[𝑀]−1{𝐹(𝑡)}
} (9) 

Based on this, the formula used to estimate {𝑋(𝑡)} at different grid points 𝑡𝑖 is repro-

duced with the following equation: 

 {𝑋(𝑡)} = {𝑋𝑖} +
1

6
[{𝐾1} + 2{𝐾2} + 2{𝐾3} + {𝐾4}] (10) 

In which: 

 {𝐾1} = ℎ × 𝑓({𝑋𝑖}, 𝑡𝑖) (11) 

 {𝐾2} = ℎ × 𝑓 ({𝑋𝑖} +
1

2
{𝐾1}, 𝑡𝑖 +

1

2
ℎ) (12) 

 {𝐾3} = ℎ × 𝑓 ({𝑋𝑖} +
1

2
{𝐾2}, 𝑡𝑖 +

1

2
ℎ) (13) 

 {𝐾4} = ℎ × 𝑓({𝑋𝑖} + {𝐾3}, 𝑡𝑖) (14) 

2.3 Estimation method using Unscented Kalman Filter (UKF) 

The Unscented Transform (UT) [20] is a method of statistical computation of a ran-

dom variable undergoing a non-linear transformation. UKF uses UT to create an easier 

way to approximate a Gaussian random variable (GRV) to avoid approximating an ar-

bitrary density function by a non-linear transformation. The features of UT include: 

Calculation of the set of Sigma points χ, Each Sigma point will have a weight w, Trans-

form the points through a non-linear function, and Calculate the Gaussian distribution 

from the weighted points.  

Sigma points 𝜒, assuming that the state functions follow a Gaussian distribution, we 

have the following definitions from [21]: 
 𝜒0 = �̅�  (15) 

 𝜒𝑖 = �̅� + √(𝑛 + 𝜆)𝑃𝑖
𝑋𝑋 , 𝑖 = 1,2, … , 𝑛  (16) 

 𝜒𝑖 = �̅� − √(𝑛 + 𝜆)𝑃𝑖
𝑋𝑋 , 𝑖 = 𝑛 + 1, 𝑛 + 2,… ,2𝑛  (17) 

In which: 𝑃0
𝑋𝑋 is covariance error matrix; �̅� is states' vector mean; 𝑛 is the number of 

states; 𝜆 is the scaling parameter; 𝑖 is the column vector number. 

The weight 𝑤 corresponding to each sigma point is calculated according to the fol-

lowing formula: 

  𝑤𝑚
0 =

𝜆

𝑛+𝜆
 (18) 

  𝑤𝑐
0 = 𝑤𝑚

0 + (1 − 𝛼2 + 𝛽) (19) 

  𝑤𝑚
𝑖 = 𝑤𝑐

𝑖 =
1

2(𝑛+𝜆)
, 𝑖 = 1, … ,2𝑛 (20) 

  𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 (21) 

  𝜅 ≈ 3 − 𝑛 (22) 

which: 𝑤𝑐
0 is the weight of the first row in the covariance matrix. 

 𝑤𝑚
0  is the weight of the first row in the formula (23). 
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 𝑤𝑖 is the weight of the remaining rows. 

 𝜅 ≥ 0; 𝛼 ∈ (0,1];𝛽 = 2 is the optimal choice for the Gaussian distribu-

tion 

The State-space model. 

The Kalman filter is a powerful model-based quantitative technique for identifying 

structural defects. Applying mathematics to the Unscented Kalman filter, The transition 

matrix of a continuous system in the general form of the state-space model can be de-

fined as follows: 

 �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡)) (23) 

 𝑌(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) (24) 

In which : �̇�(𝑡) is a state-space vector; 𝑓 and ℎ are the conversion function and the 

measure function; 𝑢(𝑡) and 𝑣(𝑡) are the process noise vector and measurement noise 

vector, respectively. To estimate the dynamic properties of the system, such as stiffness 

and damping, UKF will be used to process the response data obtained from the system. 

Considering the discrete state-spaces model functions, we have: 

 𝑥𝑘+1,𝑘 = 𝐹(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) (25) 

 𝑌𝑘 = 𝐻(𝑥𝑘+1,𝑘, 𝑢𝑘, 𝑣𝑘) (26) 

In which: 𝐹(𝑥𝑘 , 𝑢𝑘) = 𝑥𝑘 + ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
(𝑘+1)∆𝑡

𝑘∆𝑡
 and 𝐻 = ℎ, ∆𝑡 is the time step. 

𝑥𝑘 is a state variable vector and 𝑤𝑘 is a discrete process of white noise, 𝑌𝑘 is the meas-

urement vector, 𝑣𝑘 is a discrete measurement process noise vector, and 𝑅 is the covar-

iance value.  

UKF is similar to the traditional linear Kalman filter consisting of two steps, meas-

urement and time-step updating. It would allow calculating the Kalman gain in the 

measurement step, updating the state vector with the estimated error, and using it for 

the next iteration. The above integral can be solved numerically by using RK4th. 

Measurement Steps:  

 

The measurement steps include calculating the state vector and the output vectors 

covariance matrix and calculating the Kalman gain as follows: 

- Calculating Sigma points through the propagation function 𝐹:  

 𝜒𝑘+1|𝑘 = 𝐹(𝜒𝑘 , 𝑢𝑘) (26) 

- The estimate state vector:  

 �̂�𝑘+1
− = ∑ 𝑤𝑚

𝑖  𝜒𝑘+1|𝑘
𝑖2𝑛

𝑖=0  (27) 

- Estimate the state error covariance matrix:  

 𝑃𝑘+1
𝑋𝑋 = ∑ 𝑤𝑐

𝑖[ 𝜒𝑘+1|𝑘
𝑖 − �̂�𝑘+1

− ][𝜒𝑘+1|𝑘
𝑖 − �̂�𝑘+1

− ]
𝑇2𝑛

𝑖=0 + 𝑄𝑘 (28) 

- Calculate the matrix of Sigma points of the measurement variable: 

 𝛶𝑘+1|𝑘 =  H(𝜒𝑘+1|𝑘, 𝑣𝑘) (29) 

- Estimate the measurement variable: 

 𝑌𝑘+1
− = ∑ 𝑤𝑚

𝑖  𝛶𝑘+1|𝑘
𝑖2𝑛

𝑖=0  (30) 

- Estimate the error covariance matrix of the measurement variable: 

 𝑃𝑘+1
𝑌𝑌 = ∑ 𝑤𝑐

𝑖[ 𝛶𝑘+1|𝑘
𝑖 − 𝑌𝑘+1

− ][  𝛶𝑘+1|𝑘
𝑖 − 𝑌𝑘+1

− ]
𝑇2𝑛

𝑖=0 + 𝑅𝑘 (31) 
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- Estimate the error covariance matrix between the state estimate and the meas-

urement variable 

 𝑃𝑘+1
𝑋𝑌 = ∑ 𝑤𝑐

𝑖[ 𝜒𝑘+1|𝑘
𝑖 − �̂�𝑘+1

− ][  𝛶𝑘+1|𝑘
𝑖 − 𝑌𝑘+1

− ]
𝑇2𝑛

𝑖=0  (32) 

Calculation Kalman gain: 

 𝐾𝑘+1 = 𝑃𝑘+1
𝑋𝑌 × (𝑃𝑘+1

𝑌𝑌 )−1 (33) 

In processing the equation of state, there will always be disturbances in the data, 

calculations or estimation errors or uncertainties that lead to incorrect evaluation of the 

output. This disturbance can come from objective or subjective causes. 

The time update step: 

 �̂�𝑘+1 = �̂�𝑘+1
− + 𝐾𝑘+1(𝑦𝑘+1 − 𝑌𝑘+1

− ) (33) 

Estimate the error covariance matrix for the next iteration:  

 𝑃𝑘+1 = 𝑃𝑘+1
𝑋𝑋 − 𝐾𝑘+1𝑃𝑘+1

𝑌𝑌 𝐾𝑘+1
𝑇  (34) 

With time steps 𝑘 is increasing and  �̂�𝑘+1 is the estimated state vector of the dynamic 

system. Then, 𝑃𝑘+1 and �̂�𝑘+1 will be used for the next iteration to calculate the new 

Sigma points. 𝑄𝑘 the state error covariance matrix (estimate error), 𝑅𝑘 is the measure-

ment covariance matrix (measurement error) and 𝐾𝑘+1  is the Kalman gain. 

In which, 𝐾𝑘+1 considered as weighted based on a balanced comparison between 

estimation and measurement errors. 

3 Results and discussion 

3.1 Simulation results of BFDS vibration responses by RK4th.  

The system dynamics model of BFDS is proposed as shown in Fig.1 along with 

Eq.(1) expressed in 4-dofs form as follows: 

 [𝑀]

{
 

 
�̈�1(𝑡)

�̈�2(𝑡)

�̈�3(𝑡)

�̈�4(𝑡)}
 

 
+ [𝐶]

{
 

 
�̇�1(𝑡)

�̇�2(𝑡)

�̇�3(𝑡)

�̇�4(𝑡)}
 

 
+ [𝐾]

{
 

 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)}
 

 
= {

0
0
0
0

}  (36) 

In which the matrices [M], [K], [C] are defined in Table. 1. To apply the RK4th 

method to investigate the responses to the system, we first need to choose a suitable 

sampling frequency 𝑓𝑠. Based on some previous experience, we choose 𝑓𝑠 = 5 ÷
20 𝑚𝑎𝑥(𝑓𝑛), in which 𝑓𝑛 is the natural frequency of the system. Apply the eigenvalue 

problem in terms of Eq.(3), the frequency in the first four vibration modes: {𝑓1 =
104.34 𝐻𝑧; 𝑓2 = 266.54 𝐻𝑧; 𝑓3 = 1082.4 𝐻𝑧; 𝑓4 = 1443.8 𝐻𝑧}. From there, it is 

possible to choose the sampling frequency 𝑓𝑠 = 10000𝐻𝑧. With the data input are dy-

namic parameters and an instantaneous force of 20N on the first generalized coordinate, 

the response of the mechanical system is simulated by RK4th during the survey time 

𝑡 = 2𝑠. The responses of the machanical system are shown in Fig. 2 - 4: 
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Fig. 2. History of generalized cdisplacement by RK4th 

 

 
Fig. 3. History of generalized velocities by RK4th 

- Acceleration response: 
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Fig. 4. History of generalized accelerations by RK4th 

3.2 The UKF results 

Based on the dynamic model, the state-space equation of the 4-dofs BFDS system 

applied to UKF is shown as follows: 

 
 

 

1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16     

T

t b b m t b b m t b b m

T

X x x x x k k k k B B Q Q

x x x x x x x x x x x x x x x x

   


 (37) 

  0 0 0 0 0 0 0 0
T

t b b m t b b mX x x x x     (38) 

Measurement equation 𝑌(𝑡) = ℎ(𝑋(𝑡), 𝑣(𝑡)) is selected according to the responses 

that we want the estimate to be compared with the input response data. Perform dis-

cretization with 𝑡 = 𝑘∆. To represent the state-space equation of the next k step, the 

state transition function 𝐹(𝑥𝑘 , 𝑢𝑘) = 𝑥𝑘 + ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
(𝑘+1)∆𝑡

𝑘∆𝑡
 as follows: 
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  (39) 

The measurement equation has been discretized 𝑌𝑘 = 𝐻(𝑋𝑘+1|𝑘 , 𝑣𝑘) where 𝐻 is a 

measure similar to ℎ. Thus, based on the state-space equations 𝑋𝑘, the measurement 

equation 𝑌𝑘 and the state transition function 𝐹, the UKF process as shown in Eq.(26)-

(34).  

3.2.1 State estimate.  

The input data is based on Table.1 include [M], [K], [C] and the excitation force as 

known in the process of simulating the vibration response by RK4th. Next, we choose 

the initial condition of UKF as follows: 

 α = 1/2, β = 2, κ = 3, λ = −11.25  (40) 

 wn
0 = −2.368,wc

0 = 0.38,wm
i = wc

i =
2

19
 (41) 

 ∆t =
1

fs
=

1

10000
= 0.0001s (42) 

 X0 =
{x1̅ x2̅̅̅ x3̅̅̅ x4̅̅̅ x1̅̇ x2̇̅̅̅ x3̇̅̅̅ x4̇̅̅̅ k1 k2 k3 k4 c1 c2 c3 c4}T (43) 

 P0 = diag [
cov(x1), cov(x2), cov(x3), cov(x4), cov(x1̇), cov(x2̇), cov(x3̇),

cov(x4̇), 0,0,0,0,0,0,0,0
] (44) 

The measurement variables applied to the mechanical system include displacement, 

velocity and acceleration responses calculated based on the RK4th method. Process 

noise matrix: Q = 10−4 × 𝐈16×16. Measurement noise matrix: R = 10−9 × 𝐈12×12.  The 

results of the response estimation of the system are shown in Fig. 5 6 7.  

- Estimation of displacement response by UKF 
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Fig. 5. The estimation of generalized displacement by UKF 

- Estimation of velocity response by UKF 

 

 
Fig. 6. The estimation of generalized velocities by UKF. 
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- Estimation of acceleration response by UKF. 

 

 
Fig. 7. The estimation of generalized accelerations by UKF 

3.2.2 Dynamic parameter estimation. 

The process of estimating dynamic parameters [K] and [C] depends a lot on the se-

lection of initial data, in which three factors have the most significant impact on the 

performance and accuracy of UKF, including:  

- An initial error covariance matrix 𝑃0.  

- Process noise matrix 𝑄. 

- Measurement noise matrix 𝑅.  

To investigate the influence of these three factors in the estimation process, we pro-

vide the parameter values of stiffness, damping and measurement variables such as dis-

placement response, velocity, and acceleration. Then operate UKF and comment on the 

results regardless of whether they converge. So for each case, when we change different 

parameters of the mechanical system (stiffness or damping or both), there will exist 

parameter sets containing corresponding 𝑃0, 𝑄 and 𝑅 objects that we need to investi-

gate. They are represented as follows: 
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𝑃0 =

[
 
 
 
 
 
 
 
 
 
 
𝑐𝑜𝑣(𝑥1) 0    ⋯   0

 𝑐𝑜𝑣(𝑥2)        
  ⋱       
   ⋱      
    𝑐𝑜𝑣(𝑣3)    ⋮

⋮     (𝜎𝑘1
𝑒𝑟𝑟𝑜𝑟)

2
   

      (𝜎𝑘2
𝑒𝑟𝑟𝑜𝑟)

2
  

       ⋱ 0

0   ⋯    0 (𝜎𝑐4
𝑒𝑟𝑟𝑜𝑟)

2
]
 
 
 
 
 
 
 
 
 
 

12×12

 (45) 

 𝑄 = 𝑑𝑖𝑎𝑔([𝑢𝑝])16×16 (46) 

 𝑅 = 𝑑𝑖𝑎𝑔([𝑢𝑚])12×12 (47) 

The initial conditions are set up the same as the steps of State Estimation. The pa-

rameter estimation results by UKF are shown as follows: 

- The estimation of the stiffness parameter is shown in Fig. 8.  

 

  
Fig. 8. The estimation of the stiffness parameter by using UKF 

- The estimation of the damper parameter is shown in Fig. 9. 
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Fig. 9. The estimation of the damper parameter by using UKF. 

3.3 Compare and evaluate the estimated results. 

3.3.1 Response estimation results by using UKF. 

Based on the diagrams, Fig. 2 – Fig. 7 shows the results of simulated responses by 

the RK4th method and response estimation results of UKF; the similarities can be seen 

through visual observation. 

The correlation coefficients are calculated to evaluate the correlation between the 

results of RK4th simulated responses and the UKF estimated. The correlation 

coefficients are calculated and listed in Tables. 2.  
Table. 2. Correlation coefficients between RK4th and UKF at the generalized responses. 

Response estimation 
Generalized Coordinates 

𝑥𝑡 𝑥𝑏 𝛳𝑏 𝛳𝑚 

The correlation coefficients (r) 0.988 0.982 0.979 0.977 

Response estimation 
Generalized Velocity 

�̇�𝑡 �̇�𝑏 �̇�𝑏 �̇�𝑚 

The correlation coefficients (r) 0.673 0.741 0.957 0.956 

Response estimation 
Generalized Acceleration 

�̈�𝑡 �̈�𝑏 �̈�𝑏 �̈�𝑚 

The correlation coefficients (r) 0.933 0.889 0.929 0.897 
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Based on correlation coefficients (𝑟) according to Table. 2, it can be remarked that 

the response estimation results have a similarity. The correlation coefficients (𝑟) be-

tween responses are quite high, with the average value �̅� = 0.908. This non-uniformity 

warns that there are some problems related to the parameter set containing the objects 

𝑃0, 𝑄 and 𝑅. 

Furthermore, Fig. 5 6 7 shows deviations at the initial loop times and rapid conver-

gence based on the short duration (averaged from 1÷1.5s=) and slope of the graphs. 

The comments from the above response estimation results have proved that the UKF 

model can be considered to apply to complex systems such as BFDS.  

 

3.3.2 Estimation of dynamic parameters by UKF 

The UKF parameter estimation method has shown superiority over other numerical 

methods. The error percent is calculated and listed in Table. 3 based on the dynamic 

parameter estimation (Fig. 8-9). 

Table. 3. The parameter estimated error percent. 

Parameter 

estimation 
𝐾1 𝐾2 𝐾3 𝐾4 𝐵𝑡 𝐵𝑏 𝑄𝑏 𝑄𝑚 

Percent (%) 5.23𝑒−10 1.27𝑒−9 1.36𝑒−4 1.09𝑒−4 4.66𝑒−6 1.82𝑒−5 6.17𝑒−2 0.055 

It was found that there was no significant difference between the stiffness [𝐾] and 

damping [𝐶] estimates compared with the input values. The percentage of deviations 

between the final UKF estimated values and the data input values clearly shows this. 

In terms of convergence, the stiffness parameter estimates show faster convergence 

(within 0.5 ÷ 1𝑠) than damping (within 1.5 ÷ 2𝑠). This can be explained through the 

parameter set containing the objects 𝑃0, 𝑄 and 𝑅 suitable for stiffness estimation but not 

suitable for damping. 

The main reason for the effectiveness of UKF is that it is a powerful filter to estimate 

dynamic parameters while having only a finite number of state responses input data. 

Therefore, UKF results will estimate better when there are many input responses.  

4 Conclusion  

This paper has presented the survey method and system identification for BFDS. 

BFDS is modelled as a mechanical system with 4-DoFs, and dynamic parameters are 

determined that are directly related to the vibration responses of the system. This paper 

has investigated and estimated that the vibration response of the system, such as 

displacement, velocity, and acceleration, could be determined using two numerical 

methods, including the RK4th and UKF methods. In addition, UKF has demonstrated 

the ability to estimate the dynamic parameters of the system accurately, which is also 

considered a novelty of the research topic. The obtained results and some comments are 

as follows: 

-  System identification through the vibration responses of a complex system, in-

cluding rotational and translational motion such as BFDS, is one of the topics of great 

interest. Several methods of modal analysis through system dynamics modelling have 

achieved remarkable success. Even so, these methods have some limitations, depending 
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on the degrees of freedom, how the mechanical system is modelled, and how the dy-

namic parameters are calculated. It makes it difficult to determine the system by exper-

iment. Consequently, numerical methods such as RK4th and UKF have been applied to 

the dynamic model, allowing us to estimate the state of the BFDS based on vibrational 

responses corresponding to each generalized coordinate. The high correlation between 

the two numerical methods shows the correctness of this paper. 

- This study has achieved initial success in applying UKF by accurately estimating 

the dynamic parameters of the system like [K] and [C]. However, when using UKF in 

the experiment, it will be necessary to consider specific cases. Certain limitations exist 

in collecting experimental measurement responses as input data to UKF, so the amount 

of input response data will be limited. In the experiment, it is easy to measure the ac-

celeration responses through the accelerometer sensor system, which is placed in suit-

able positions on the BFDS, but the rotational acceleration responses will sometimes 

be difficult.  

-  Besides, for the UKF model to estimate accurately, some conclusions are drawn 

as follows: the first is the selection of the number of degrees of freedom for the me-

chanical model and the dynamic parameter; consider the processes of establishing var-

iables in the state-space equation; consider the measurement or response variables and 

excitation forces used as input for UKF; the set of weight parameters for the covariance 

matrices, the process noise matrix, and the measurement noise matrix need to be care-

fully considered and set up.  

-  The scope of this paper's research is limited to surveying through numerical sim-

ulation to provide a new approach for applying UKF to the BFDS system. Some ad-

vantages and disadvantages are also mentioned in the above comments. From there, it 

opens up the scope of future research, aiming to establish an efficient and suitable data 

collection measurement system to ensure the quality of the input dataset for UKF. Be-

sides, it is necessary to overcome the limitation on the number of input measurement 

data for the UKF to estimate dynamic parameters more easily and approximate the ex-

periment. 
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