
Comparison Study of Machine Learning-Based Methods
for Structural Damage Detection

Viet-Hung Dang1,*

1 Faculty of Building and Industrial Construction, Hanoi University of Civil Engineering, Vi-
etnam

hungdv@huce.edu.vn

Abstract. Output-only methods based on machine/deep-learning algorithms are
highly practical approaches for timely detecting potential damages in civil
structures as they directly employ measured vibration signals but do not require
exact knowledge of input loading nor the service interruption for manual in-
spection. However, there is no one-size-fits-all model that is optimal for all
problems in different perspectives; hence, it is necessary to discover the ad-
vantages as well as drawbacks of different models, then leverage these under-
standings to select the most appropriate model for specific structures in reality.
Therefore, this study extensively compares various machine learning-based
methods ranging from relatively simple ones such as Naïve Bayes to complex
ones such as the extreme boosting tree-based ensemble model. The comparison
results include various aspects such as model complexity, training time, detec-
tion accuracy, and inference time. The results show that for the bagging ensem-
ble model, random forest achieves the highest detection accuracy, and the non-
parameter KNN model has a good balance between accuracy and model com-
plexity.

Keywords: Structural health monitoring, machine learning, output-only, sensor
signal.

1 Introduction

Structures’ vibration signal is a rich information source that can be measured di-
rectly in a straightforward fashion when the structures are under normal service, being
subjected to random ordinary loads. There have been abundant methods developed for
vibration-structural health monitoring, ranging from relatively simple statistical meth-
ods to sophisticated optimization algorithms and powerful artificial intelligence mod-
els.

The output-only SHM problem could be reformulated as an optimization problem
in which one minimizes a fitness function measuring the deviation between measured
data and computation data. The solutions of the optimization contain information
about damage locations and damage levels. After that, one can resort to various heu-
ristic optimization algorithms to solve the optimization problem, such as CBO [1],
CSS [2], particle swarm strategy [3], etc. However, these optimization methods usual-

2

ly require an additional pre-processing step to extract modal characteristics from vi-
bration data such as eigenfrequency, mode shape, and modal assurance criteria [4].

Instead of using modal features, it is possible to use features in other domains, such
as statistical, time, and frequency domains, to perform SDD. It is noted that extracting
these features is easier than modal features. After that, a number of machine learning
algorithms could be leveraged to perform damage detection tasks. In the early period
of AI development, Naïve-Bayes was a simple, practical, and interpretable method
that could quickly provide SDD results, as demonstrated in [5]. However, a major
limitation of this method is the assumption of feature independence, i.e., the features
extracted from the same vibration signals are completely uncorrelated. Later, another
ML algorithm, namely the Support vector machine, was proved to provide better per-
formance than other simple methods such as Naïve-Bayes and regression classifier.
Zhou et al. [6] used a support vector machine algorithm to perform building SDD and
achieved a high accuracy of more than 90%. Furthermore, the authors proposed to
employ multiple SVM models to work with multisensory signals, helping increase
further the model's robustness against sensor failures. SVM was also successfully
utilized by other authors, such as Diao et al. [7], even with noisy signals. For many
researchers, it is of great importance to understand the contribution of every feature to
the final model performance. That is why the interpretable Decision Tree algorithm is
widely favorited by many researchers; for example, Karbassi et al. [8] used DT for
detecting damage in regular reinforced concrete buildings, Imad et al. [9] employed
DT in monitoring the working conditions of the complex wind turbine structures un-
der stochastic wind loads. In order to detect potential post-earthquake damage in
braced-frame structures, Salkhordeh et al. [10] proposed a two-stage SDD method
that first extracts dynamic features such as drift, correlation, and energy ratio, then
utilizes the DT algorithm as a classifier to identify the structure’s health status. An-
other practical machine learning algorithm favored in SDD is the k-nearest neighbor
algorithm, for example, the work of Ghiasi et al. [11], for detecting damage due to
corrosion in steel railway bridges. In order to improve further the SDD performance
of tree-based methods, Zhou et al. [12] suggested using an ensemble of trees, i.e., the
random forest model, along with a data fusion strategy. The authors postulated that
the proposed method outperforms other counterparts, including conventional RF and
SVM methods. Other tree-boosting models that could provide competing performance
with RF are Adaboost and LightGBM [13]. Recently, a widely considered one of the
state-of-the-art machine learning algorithms, i.e., XGBoost, has been favored by vari-
ous authors when performing structural health monitoring as the works of Dong et al.
[14] for concrete structures, Wang et al. [15] for timber buildings, Zhang et al. [16]
for bridge structures. Another appealing strategy is to directly use raw high dimen-
sional vibration data and put them into a data-driven model to perform SDD tasks as
done by Hung [17, 18].

Given a large number of machine learning-based SHM models, this study aims to
perform an extensive comparison to highlight the advantages and inconveniences of
each model, thus, providing a useful basis for structural engineers in selecting an ap-
propriate model for specific structures with available computational resources.

3

2 Machine Learning-Based Methods for Structural Damage
Detection

2.1 Logistic regression

The main idea of Logistic Regression (LR) is to calculate the probability of every
class by applying a logistic function to a latent variable 𝑧 obtained from a linear com-
bination of input variables. Mathematically, the latent variable z is calculated by:

𝑧(𝑦 = 1) = 𝑤ଵ଴ + 𝑤ଵଵ𝑥ଵ + ⋯ + 𝑤ଵ௡𝑥௡ = 𝑊ଵ
் . 𝑋

𝑧(𝑦 = 2) = 𝑤ଶ଴ + 𝑤ଶଵ𝑥ଵ + ⋯ + 𝑤ଶ௡𝑥௡ = 𝑊ଶ
் . 𝑋

(1)

Then the probability output is:

𝑃(𝑦 = 1) =
𝑒௭(௬ୀଵ)

𝑒௭(௬ୀଵ) + 𝑒௭(௬ୀଶ)

𝑃(𝑦 = 2) =
𝑒௭(௬ୀଶ)

𝑒௭(௬ୀଵ) + 𝑒௭(௬ୀଶ)

(2)

In which 𝑤௜,௝ are the model parameters, 𝑖 = 1, 2 and 𝑗 = 1, … , 𝑛. Then, the predict-
ed class is the one with the highest probability. For multi-label classification problems
such as detecting the damage element among multiple structural elements, the logistic
regression can be extended into the softmax regression with the probability of a class
𝑘 is:

𝑃(𝑦 = 𝑘) =
𝑒 ௭(௬ୀ௞)

∑ 𝑒௭(௬ୀ௜)஼
௜ୀଵ

with 𝑧(𝑦 = 𝑘) = 𝑤௞଴ + 𝑤௞ଵ𝑥ଵ + ⋯ + 𝑤௞௡𝑥௡ = 𝑊௞
் . 𝑋

(3)

The parameters 𝑊 can be determined by maximizing the Maximum Likelihood Es-
timation loss function using one of some popular optimization algorithms lbfgs, bilin-
ear, newton-sage, etc.

2.2 Naïve Bayes

The Naïve Bayes method is a fast and simple method based on Bayes’ theorem and
under a strong (naïve) assumption that features are completely independent. Let’s
denote 𝑃(𝑦) and 𝑃(𝑥௜|𝑦) being class prior probability and features’ conditional prob-
ability which can be determined from the training dataset. After that, given a feature
vector 𝑋 = (𝑥ଵ, … , 𝑥௡), the posterior probability of each class is calculated via the
Bayes formula as follows:

𝑃(𝑦 = 𝑘|𝑋) =
𝑝(𝑘)𝑝(𝑋|𝑘)

𝑝(𝑋)
=

𝑝(𝑘)𝑝(𝑥ଵ|𝑘) … 𝑝(𝑥௡|𝑘)

𝑝(𝑥ଵ) … 𝑝(𝑥௡)
 (4)

Then the class having the highest posterior probability is selected as the predicted
result.

𝑦௣௥௘ௗ = argmax
௞∈{ଵ,..,஼}

𝑃(𝑘|𝑋) (5)

4

2.3 Support Vector Machine

The key idea of the SVM classifier is to first use a kernel function to project data
samples to equal or higher dimensional spaces that are potentially easier to classify
data samples than in the original space; second, to seek a hyperplane in the new space
to clearly separate data samples. The desired hyperplane is that the distance, a.k.a
margin, from the nearest data points (support vectors) of all classes to this hyperplane
is the largest. Mathematically, the SVM classifier can be described as follows. The
transformation operator is Ω(𝑥): 𝑅஽ → 𝑅ெ, then the function of the linear hyperplane
in the transformed space is:

𝑊்Ω(𝑥) + 𝑏 = 0 (11)
The margin between any data point x to the hyperplane is:

𝑑(𝑥) =
|𝑊்Ω(𝑥) + 𝑏|

ห|𝑊|ห
ଶ

 (12)

where ||W||2 is the Euclidean norm, a.k.a L2 norm, which is calculated by

ห|𝑊|ห
ଶ

= ට𝑤ଵ
ଶ + ⋯ + 𝑤ெ

ଶ (13)

After that, the SVM classifier can be reformulated as a conventional constrained
optimization problem that seeks 𝑊 and 𝑏 to maximize the margin between data points
to the hyperplane under the constraint that the classes of all training data points are
correctly determined. Next, various optimization algorithms, such as quadratic pro-
gramming, gradient-based methods, etc., can be employed to solve this problem. For
some problems, a non-linear version of SVM can be assorted to achieve better per-
formance. On the other hand, SVM uses a kernel function to compute the distance
between two data points in higher dimensional space without explicitly performing
the transformation, helping significantly boost the computational time.

2.4 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is one of the most simple ML algorithms that are easy
to understand and implement. Its underlying idea is based on the voting mechanism.
Specifically, given a new unlabeled data point, KNN first identifies the K-closest
labeled data points in the training dataset of that new data point. Next, the most popu-
lar class among these K-labeled data is assigned to the new data point under consider-
ation. To measure the distance among data points, some popular distances could be
used, such as Euclidean distance, Manhattan distance, etc. It can be seen that KNN
does not require any training process; it simply stores the labeled training data. Thus,
it is classified into the lazy-learner methods. However, when the size of the training
data is big and/or the data is high-dimensional, the computational effort could be
highly expensive because it is necessary to compute the distances between new data
with all training data points.

5

2.5 Decision Tree

Decision tree algorithm is a recursive algorithm that partition data into two non-
overlapping group based on values of a specific feature. The partition is carried out
until a stopping condition such as the maximum number of splitting steps, the mini-
mum number of samples in a leaf, etc. is met. The original data correspond to the
Root node at the top of the tree, each feature used to split data is called decision node,
and associated sub-dataset correspond to a divided branch is called sub-tree. And the
final group, at the bottom of each tree branch is named leaf node. Give a new data
sample, based on values of each decision nodes, it will be classified into one of leaf
nodes and assigned to the corresponding output class. At each decision node, the pop-
ular way to perform the split is the information gain technique which attempt to min-
imize the randomness of samples within groups. The randomness of data is measuring
by using the entropy metric which is mathematically expressed by:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = − ෍ 𝑝(𝑘) logଶ 𝑝(𝑘)

஼

௞ୀଵ

 (14)

where 𝑝(𝑘) is the percentage of data belonging to a class k, the entropy value ranges
from 0 to 1 if the data is perfectly homogeneous, i.e., all samples belong to one group,
and there is no randomness, i.e., Entropy equals 0. In contrast, if the data is uniformly
distributed among groups, the randomness is at its highest, i.e., Entropy equals 1.
Next, the information gain is derived from measuring the difference in Entropy before
and after performing the splitting action with a selected feature.

𝐼𝐺(𝐷, 𝑓) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ෍
|𝐷௩|

|𝐷|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷௩)

௩∈௙

 (15)

where 𝑣 is a value of feature 𝑓, |𝐷| is the total number of data, |𝐷௩| is the number of
data with feature 𝑓 equal to 𝑣. The feature that yields the highest information gain
will be selected as the decision node.

2.6 Random Forest

In order to improve further the classification performance and robustness of tree-
based models, Breiman [10] developed the Random Forest algorithm which utilizes
multiple decision tree models in a bagging fashion for predicting results, then the final
output is obtained via a majority-voting mechanism. The underlying idea of Random
Forest is that each individual has its own strength and weakness due to its specific
configuration, different hyperparameters, selected features, etc. Thus, combining mul-
tiple DT models will increase the diversity, bring additional complementary strengths,
reduce the bias and improve the generalization improvement. Specifically, the bag-
ging technique involves dividing the entire data and set of features into different sub-
sets with placement, i.e., data points could be reused multiple times. Each subset
serves to train an uncorrelated decision tree. The realization steps of Random Forest
could be summarized as follows:

- Define a forest comprised of N uncorrelated decision tree models

6

- Sample Bagging: Randomly divide original data into N sub-datasets
with replacement

- Feature bagging; randomly select N subset of features.
- Training all N decision tree models
- Aggregating classification outputs of DT models by majority-voting

2.7 Adaboost

Fig. 1: Representation of Adaboost

Apart from the bagging technique, another popular technique to combine multiple
ML models is boosting. Boosting refers to a family of algorithms which converts
multiple weak learners to a single strong learner. Yoav Freund and Robert
Schapire proposed to combine DT models via a weighted sum whose weights are
adaptively updated in a sequential manner. This method is called the adaptive boost-
ing technique (Adaboost) [28]. Note that, unlike the bagging method, in the boosting
method, each DT mode is trained with the entire training data. Formally, let’s denote
𝐷𝑇௞(𝑋௜) as base models, with 𝑘 = 1, … , 𝑁௠௢ௗ௘௟ , 𝑁௠௢ௗ௘௟ is the total number of mod-
els, 𝛼௞ is the weight assigned to 𝐷𝑇௞(𝑋௜), 𝑋௜ is a data sample with 𝑖 = 1, … , 𝑁ௗ௔௧௔ ,
𝑁ௗ௔௧௔ is the total number of samples. Initially, the weights are set uniformly to 𝛼௜ =
1/𝑁௠௢ௗ௘௟ . Considering model 𝑘, an error made by 𝐷𝑇௞ on 𝑋௜ is denoted by 𝑒௜,௞. Thus,
the total error by 𝐷𝑇௞ is:

𝐼𝐺𝑒௞ = ෍ 𝑒௞௜

ே೏ೌ೟ೌ

௜ୀଵ

 (16)

Next, the weight of 𝐷𝑇௞ is computed as follows:

𝛼௞ =
𝑒௞

1 − 𝑒௞
 (17)

On the other hand, the Adaboost algorithm, also assigns weights to data samples and
pay more attention to those that are misclassified by previous models. The weight of
each data sample 𝑖 is updated for the next model 𝑘 + 1, as below:

𝑤௞ାଵ,௜ =
𝑤௞,௜𝛼௞

∑ 𝑤௞,௜𝛼௞
ே೏ೌ೟ೌ
௜ୀଵ

 (18)

7

2.8 LightGBM

Fig. 2 Representation of the LightGBM algorithm

Another boosting strategy is gradient boosting, in which a sequence of DT models

is successively designed and trained. At each iteration, the prediction mistakes, a.k.a
residual errors made by previous models, are calculated, then a new DT model is
derived from previous ones to predict these residual errors. Hence, by summing the
output predictions of previous DT models with the residual error prediction by the
new DT model, obtained results will approach the actual output. With gradient boost-
ing, the parameters of the new DT model, such as split points, split variables, and leaf
values, are determined by using the gradient, a.k.a; the rate of change of the loss func-
tion with respect to the model’s predicted values. Based on the principle of gradient
boosting, Ke et al. [26] developed a highly efficient algorithm, namely, LightGBM,
which grows DT models in a leaf-wise fashion, i.e., the new tree is obtained by in-
cluding a new leaf to its predecessor. A graphical explanation of LightGBM is illus-
trated in Fig. 2. It can be seen that starting with model 1, one will create a model 2
based on a critical feature (in red), and the results at iteration 2 are obtained by aggre-
gating outputs of both models 1 and 2. Next, at iteration 3, model 3 is devised to im-
prove the performance of model 2, and the results at iteration 3 are calculated based
on the outputs of all three models. The above procedure is repeated until one of the
convergence criteria is reached. Furthermore, LightGBM also leverages the gradient
information to identify samples difficult to predict, i.e., those with high-gradient sam-
ples. By doing so, LightGBM could reduce the training size by focusing more on
samples with high gradients while only utilizing a small portion of samples with low-
gradient values, thus shortening convergence speed and potentially improving accura-
cy.

2.9 XGBoost

The last ML algorithm of interest in this study is Extreme Gradient Boosting
(XGBoost) which is a favorite of various authors thanks to its high performance and

8

efficiency; however, the theoretical background of the method is fairly more compli-
cated than those of others, and it has a number of user-defined hyperparameters.
Therefore, it is necessary to understand the algorithm mechanism to better apply this
algorithm to specific problems. Different from LightGBM, XGBoost uses a level-
wise tree growth approach to engineer new trees in the ensemble. This strategy ex-
pands all nodes at a considered level before going down to a deeper level. The growth
of each branch is stopped when one of the predefined criteria is met, such as the max-
imum depth of the tree, a minimum number of samples per leaf, etc. To measure the
improvement of the model, XGBoost elaborates an objective function including two
components: the loss function evaluating the prediction error and a regularization
term for controlling the model complexity and mitigating the overfitting risk, as fol-
lows:

𝑜𝑏𝑗௧ = ෍ 𝐿൫𝑦௜, 𝑦௜
௣௥௘ௗ൯ + Ω(𝑓௧)

௡

௜ୀଵ

= ෍(𝑦௜ − (𝑦௜
௧ିଵ + 𝑓௧(𝑥௜))ଶ + Ω(𝑓௧)

௡

௜ୀଵ

 (19)

In which 𝑛 is the number of samples, T is the number of trees, 𝑦௜ , 𝑦௜
௣௥௘ௗ are the ac-

tual and predicted outputs of data sample i, 𝑦௜
௧ିଵ and 𝑦௜

௧ = 𝑓௧(𝑥௜) are prediction values
at previous tree level and current level 𝑡 − 1 and t, respectively. 𝐿൫𝑦௜ , 𝑦௜

௣௥௘ௗ
൯ is the

loss function, and Ω(𝑓௧) is a regularization term of tree 𝑡. On the other hand, in addi-
tion to gradient information, XGBoost employs the hessian of loss function w.r.t pre-
dicted values to update the new DT model.

𝑔௧(𝑥௜) =
𝜕𝐿൫𝑦௜, 𝑦௜

௣௥௘ௗ
൯

𝜕𝑓௧(𝑥௜)

ℎ௧(𝑥௜) =
𝜕ଶ𝐿൫𝑦௜ , 𝑦௜

௣௥௘ௗ
൯

𝜕𝑓௧(𝑥௜)ଶ

(20)

By using the second order Taylor expression, the objective function is rewritten in
function of the gradient and hessian information as below:

𝑜𝑏𝑗௧ = ෍ 𝐿൫𝑦௜, 𝑦௜
௣௥௘ௗ

൯ + Ω(𝑓௧)

௡

௜ୀଵ

= ෍(𝑦௜ − (𝑦௜
௧ିଵ + 𝑓௧(𝑥௜))ଶ + Ω(𝑓௧)

௡

௜ୀଵ

𝑜𝑏𝑗௧ = ෍(𝐺௧𝛼௧ +
1

2
(𝐻௧ + 𝜆)𝛼௧

ଶ) + γT

்

௧ୀଵ

(21)

with

 𝐺௧ = ෍ 𝑔௧(𝑥௜)

௜∈ଵ,…,௡

, 𝐻௧ = ෍ ℎ௧(𝑥௜)

௜∈ଵ,…,௡

, 𝛼௧ = −
𝐺௧

𝐻௧ + 𝜆
 (22)

where 𝜆 and 𝛾 are hyperparameters, T is the number of leaves.

3 Introduction

3.1 Problem description

9

Fig. 3: Experiment with a full-size reinforced concrete circular column at Missouri

University of Science and Technology [19]

In this subsection, the experimental database from an experiment with a full-size

reinforced concrete column at Missouri University of Science and Technology [19] is
used to validate the ML models under investigation. The column has a circular section
with a diameter of 610mm and a height of around 3660 mm. The columns were sub-
jected to reversed-cyclic loads with various amplitudes, leading to 12 different dam-
age scenarios, as listed in Table 1. To monitor the structural health of the column,
smart aggregate sensors were used as transducers to collect and send waves to a com-
puter. The sensors were preinstalled at the column top and bottom locations before
casting concrete. It is expected that damaged areas (crack, spalling, etc.) will reduce
the transmission energy of the signal waves when the column is subjected to external
load; thus, the transmission energy will scale linearly with the damage severity of the
columns. The signal database is then divided and reshaped in a 3D tensor with a shape
of [700, 7, 500] in which 700 is the number of sensor signals, 7 is the number of sen-
sors, and 500 is the signal length. This database is then divided into three sub-datasets
for training, validation, and testing with a ratio of 60:20:20.

Table 1. Structural states of reinforced concrete columns

Ductility
level

1 2 3 4 5 6 7 8 9 10 11 12

Value
(%)

20 40 60 80 90 100 150 300 450 600 800 1000

10

3.2 Comparison results

Once the database is in place, it is put through these ML-based methods described
above. At this stage of the study project, the authors adopt the default parameters of
each method. By doing so, one can have relatively subject baseline detection results;
otherwise, if the tuning parameter is applied, some user-defined parameters will be
subjectively introduced by users based on their experiences and domain knowledge.
Some key parameters of every model are enumerated in Table 2.

Table 2. Hyperparameters of machine learning algorithms

Method Hyperparameter
RF n_estimators=100, criterion='entropy', min_samples_leaf=1
LR penalty='l2', solver='lbfgs', max_iter=100

SVM kernel='rbf', degree=3, tol=0.001,
LightGBM num_leaves = 31, learning_rate = 0.1, n_estimators = 100
XGBoost n_estimators = 100, learning_rate = 0.1
AdaBoost n_estimators=50,learning_rate=1.0, algorithm='SAMME.R'

Naïve Bayes No parameter
DT criterion='Entropy', splitter='best', , min_samples_leaf=1

KNN n_neighbors=5, weights='uniform', metric='euclidean'

Fig. 4: Comparison of SHM results obtained by different ML-based algorithms

After that, the training and inference stages are carried out. To ensure reproductivi-

ty, calculations with each method are repeated ten times, then the mean and standard
deviation values are reported. The comparison results are graphically illustrated via a
bar chart in Fig. 4, in which the y-axis denotes the F1-score of detection results, and
the x-axis corresponds to the method. The standard deviation of the f1-score is repre-
sented by a vertical bar at the top of each bar. Apparently, the bagging ensemble

11

method, Random Forest, achieves the highest F1 score of around 0.92. Unexpectedly,
the second best method is the quasi-non-parameter KNN method which yields a f1-
score of 0.91 with a significantly small variance. In contrast, the Naïve Bayes method
provides poor results with a f1 score of around 0.15. Moreover, the uncertainty of the
Naïve Bayes is considerably higher than the others. The tree-based boosting ensemble
methods such as XGB, LBGM, and Adaboost improve the performance by a small
margin compared to the original decision tree algorithm. The SVM and LR are also
able to provide acceptable results. Furthermore, the detection results obtained by the
best method (RF) on testing data are demonstrated in detail via a confusion matrix in
Fig. 5. showing that RF can correctly identify the column states from signal vibra-
tions.

Fig. 5: Confusion matrix of SHM results obtained by Random Forest

Table. 3: Computational efficiency of Machine learning models
Method RF LR SVM LBGM XGB Ada Naïve DT KNN
Training
time (s)

4.0 8.7 0.5 142 129 18.2 0.04 1.4 0.008

Inference
times (s)

0.2 0.06 1.76 0.35 0.10 0.6 0.4 0.03 0.6

Model
size (kB)

66 68 43 50 48 71 49 63 73

On the other hand, the efficiency of these methods is also compared in terms of

training time, inference time, and model sizes, as listed in Table 3. It can be seen that
KNN does not require a training process, as discussed in the previous section; thus,

12

the training time is near zero. In contrast, its inference time is higher than other meth-
ods because it needs to repeat the distance calculation every time with all training
data. Meanwhile, LR and Naïve Bayes are very fast as their inference times are only
0.06 and 0.03 s, respectively. Overall, it can be seen that ML-based SDD methods
have small model sizes, thus requiring only a small amount of memory, while its in-
ference times are less than a second. Thus, they can be installed in edge devices at-
tached to real structures to provide real-time monitoring results.

4 Conclusion

In this study, an extensive comparison study on SDD methods based on ML algo-
rithms using raw vibration data has been carried out. Compared to usually considered
black box DL models, the ML algorithms have significantly fewer trainable parame-
ters and a is more understandable; meanwhile, compared to classical statistical-based
methods, which require in advances some subjective assumptions, ML algorithms are
more objective as they learn directly from the database. There are, in total, nine mod-
els, including simple and understandable algorithms such as logistic regression to
complex and powerful ones such as XGBoost. For each model, the main idea and
theoretical background, and graphical representation have been introduced.

These algorithms are applied to an experimental database collected from experi-
ments of full-size reinforced concrete columns in the literature. Interestingly, the au-
thors found that the KNN method works extremely well since it can provide second-
best detection accuracy without requiring a training process; however, at the inference
stage, its inference time is longer than those of other methods. The author also found
that the bagging ensemble model, i.e., Random Forest outperforms other ensemble
models, such as adaptive and gradient boosting methods.

In the future study, it is interesting to investigate more deeply the sensitivity of
these ML-based SDD methods on their hyperparameters. This can be done by inte-
grating parameter-tuning optimization components based on some effective tech-
niques such as Grid-search, Random search, or Bayesian optimization. It is also inter-
esting to explore the robustness of these algorithms against different unwanted effects
on vibration signals, such as noise, anomaly, missing data, etc.

References

1. Kaveh, A. and Mahdavi, V.R., Damage identification of truss structures using CBO and
ECBO algorithm, Asian Journal of Civil Engineering, 17(1), p.75-89, (2016).

2. Kaveh, A. and Zolghadr, A., An improved CSS for damage detection of truss structures us-
ing changes in natural frequencies and mode shapes, Advances in Engineering Software,
80, p.93-100, (2015).

3. Kaveh, A., Javadi, S.M. and Maniat, M., Damage assessment via modal data with a mixed
particle swarm strategy, ray optimizer, and harmony search, Asian Journal of Civil Engi-
neering. 15(1), p. 95-106, (2014).

13

4. Deraemaeker, A., Reynders, E., De Roeck, G., & Kullaa, J. Vibration-based structural
health monitoring using output-only measurements under changing environment. Mechan-
ical systems and signal processing, 22(1), 34-56, (2008).

5. Addin, O., Sapuan, S. M., Mahdi, E., & Othman, M. A Naïve-Bayes classifier for damage
detection in engineering materials. Materials & design, 28(8), 2379-2386. (2007).

6. Zhou, Q., Zhou, H., Zhou, Q., Yang, F., Luo, L., & Li, T. Structural damage detection
based on posteriori probability support vector machine and Dempster–Shafer evidence
theory. Applied soft computing, 36, 368-374. (2015).

7. Diao, Y., Jia, D., Liu, G., Sun, Z., & Xu, J. Structural damage identification using modi-
fied Hilbert–Huang transform and support vector machine. Journal of Civil Structural
Health Monitoring, 11, 1155-1174. (2021).

8. Karbassi, A., Mohebi, B., Rezaee, S., & Lestuzzi, P. Damage prediction for regular rein-
forced concrete buildings using the decision tree algorithm. Computers & Structures, 130,
46-56. (2014).

9. Abdallah, I., Ntertimanis, V., Mylonas, C., Tatsis, K., Chatzi, E., Dervilis, N., ... &
Eoghan, M. Fault diagnosis of wind turbine structures using decision tree learning algo-
rithms with big data. Safety and Reliability–Safe Societies in a Changing World, 3053-
3061. (2018).

10. Salkhordeh, M., Mirtaheri, M., & Soroushian, S. A decision‐tree‐based algorithm for iden-
tifying the extent of structural damage in braced‐frame buildings. Structural Control and
Health Monitoring, 28(11), e2825. (2021).

11. Ghiasi, A., Ng, C. T., & Sheikh, A. H. Damage detection of in-service steel railway bridg-
es using a fine k-nearest neighbor machine learning classifier. In Structures (Vol. 45, pp.
1920-1935). (2022)

12. Zhou, Q., Ning, Y., Zhou, Q., Luo, L., & Lei, J. Structural damage detection method based
on random forests and data fusion. Structural Health Monitoring, 12(1), 48-58. (2013).

13. Mangalathu, S., Jang, H., Hwang, S. H., & Jeon, J. S. Data-driven machine-learning-based
seismic failure mode identification of reinforced concrete shear walls. Engineering Struc-
tures, 208, 110331. (2020).

14. Dong, W., Huang, Y., Lehane, B., & Ma, G. XGBoost algorithm-based prediction of con-
crete electrical resistivity for structural health monitoring. Automation in Construction,
114, 103155. (2020).

15. Wang, J., Du, X., & Qi, X. Strain prediction for historical timber buildings with a hybrid
Prophet-XGBoost model. Mechanical Systems and Signal Processing, 179, 109316.
(2022).

16. Zhang, H., Zhou, Y., Huang, Z., Shen, R., & Wu, Y. Multiparameter Identification of
Bridge Cables Using XGBoost Algorithm. Journal of Bridge Engineering, 28(5),
04023016. (2023)

17. Dang, V. H., Le-Nguyen, K., & Nguyen, T. T. Semi-supervised vibration-based structural
health monitoring via deep graph learning and contrastive learning. In Structures (Vol. 51,
pp. 158-170). (2023).

18. Dang, V. H., Vu, T. C., Nguyen, B. D., Nguyen, Q. H., & Nguyen, T. D., Structural dam-
age detection framework based on graph convolutional network directly using vibration
data. In Structures (Vol. 38, pp. 40-51). (2022).

19. Mo, Yi-Lung; Song, Gangbing; Belarbi, Abdeldjelil; Gu, Haichang; Moslehy, Yashar, Per-
formance of smart aggregates under combined reversed cyclic loading (2), DesignSafe-CI
[publisher], (2009).

