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Abstract. Natural frequencies and mode shapes are important features in the 

static analysis of beam structures. They are used in analysis, design as well as 

verification of beam structures. They also play an important role in influencing 

the dynamic response of beams. For example, just changing the natural fre-

quency by a certain amount will cause the forced vibration of the structure from 

the near-resonance region to out of the near-resonant region. Therefore, in this 

study, the modal analysis method is used to establish the characteristic equa-

tions to determine the natural frequencies and the vibration modal functions for 

prestressed beams with different boundary conditions. By numerical method, 

this work analyzed and compared these natural frequencies with the natural fre-

quencies of ordinary Timoshenko beams and Euler - Bernoulli beams. 

Keywords: Natural Frequency, Prestressed Beam, Timoshenko Beam, Modal 

Function. 

1 Introduction 

For a long time, Timoshenko (TM) beam theory is widely used [1-5] for static and 

dynamic analysis of elastic structures, such as beams, concrete bridges, railway bridg-

es, etc. Euler – Bernoulli beam (EB) theory has ignored shear deformation and rota-

tional inertia, then TM beam theory includes both factors. Therefore, it is not possible 

to establish an analytic relationship between shear force and moment in the TM beam. 

TM beams are also known as thick beam theory or second-order beam theory. 

If the transverse bending vibration of the EB beam is described by a partial differen-

tial equation of deflection, then the vibrational equations of the TM beam are a system 

of second-order partial differential equations in which the amplitude of vibration and 

the angle of rotation due to pure bending are the values to be determined [6-8]: 
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To analyze the natural frequencies and the mode shapes, it is common to use the 

free vibration equations (the right hand side is zero). To analyze forced vibration, the 
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right-hand side equations are often used. Methods of studying these problems have 

many types such as Ritz method, finite element method (FEM), finite difference 

method (FDM), modal analysis method (MAM), etc. 

In the problems of structural verification and evaluation, the natural frequencies are 

the characteristics that need to be determined. Natural frequency and natural form are 

two characteristics of beams that are also used to analyze forced vibrations of beams 

[6-10] using MAM. Moreover, in the dynamics problem, when changing frequencies 

will affect its oscillation properties, it is possible that the oscillation is moving from 

the far-resonant region to the near-resonant region or vice versa. Therefore, it is nec-

essary to define them. 

For ordinary beams, these characteristics have been studied quite fully. With pre-

stressed EB beams has been interested in many studies [11-17]. In [13], the effect of 

longitudinal force on natural frequency and mode shapes of prestressed EB beam was 

investigated according to a beam model on two supports. The effect of "softening of 

beams by pre-compression" representing the reduction of bending natural frequencies 

of beams due to pre-compression was mentioned in [14]. Research [15] used FEM 

combined with experiment to evaluate the effect of prestress on natural frequency of 

beams with free boundary. The study [16] determined the natural frequency and ei-

genform of the EB beam with cracks and prestressing, then in [17] they investigated 

the dynamics response of that type of beam under the action of a moving body. 

For prestressed TM beams (Prestressed Timoshenko - PTM), studies are still lim-

ited, In Ref. [18] the authors use the reverberation-ray matrix method to study the 

vibrations of prestressed Rayleigh-Timoshenko beams subjected to arbitrary forces. 

Ref. [19] To study the free vibration of a PTM beam placed on a Winkler elastic 

foundation using FEM. The natural frequency of the beam is not determined. 

Prestressed TM beams due to tension or compression are very common in practice, 

especially in concrete structures. Changing the natural frequency law in the presence 

of prestressing factors is necessary to be considered. In this study, this problem will 

be considered and compared with the theories of normal TM beams or EB beams. To 

determine the natural frequencies and mode functions, the paper will set up for the 

general case. Then, by substituting the boundary conditions into the general form, we 

obtain the formula for each beam corresponding to its boundary conditions. The char-

acteristic equations that determine the natural frequencies of the beams are usually 

nonlinear algebraic equations, which can be solved by the Newton-Raphson method. 

2 General Equations 

2.1 Vibration equations of the prestressed Timoshenko beam 

Consider the PTM beam model as shown in Fig.1. The geometric axis of the beam is 

straight without deformation. Neglect torsional and axial vibrations. Beams only per-

form bending vibrations and under the action of distributed force. Thus, transverse 

displacement, cross-sectional rotation, bending moment and shear force are functions 

of the x-coordinate and time t: 
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For the TM beam, the 

rotation angle   of the cross-

section is equal to the sum of 

the rotation angle   caused by 

the bending strain and the 

rotation angle   caused by the 

shear strain. For EB beams, the 

angle component  is zero due 

to ignoring the effect of shear 

strain. 
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The  vibration equations of the beam [6-9] has the form: 
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where ( )A x is the cross -sectional area,  is the mass density.  

 Bending moment and shear force determined by the formula 
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where G is the shear modulus, is the correction shear factor. 

The case of TM beams. The axial stress is determined by Hook's law in the form 
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where E is Young’s modulus, xx  is the normal strain of the beam due to bending 

displacement. 

Substituting expressions (7), (6) into equations (4), (5) we get:  
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Thus, we obtain two of partial differential equations of ordinary Timoshenko 

beams with two unknowns  ,w x t  and  ,x t  

The case of PTM beams. Normal strain ( , , )xx x z t in the x-direction:          
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Fig. 1. Beam subjected to distributed force  ,q x t  
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Fig. 2. Normal strain of a beam segment 
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where 0 ( )x is the initial normal strain caused by prestressing. Considering the 

position of the cross-section with coordinates x, the proportional long strain is: 

0 0( , ,0) ( )x z x  ,              (11) 

* ( , , )xx x z t is the normal strain added when the beam is deformed. In the elastic 

domain, these strains are linear, the total normal strain is equal to the initial strain due 

to prestressing and the strain due to bending. 

Considering a flexural beam element as shown in Fig.2, the relative long strain of a 

layer z  any of the beams depends on the coordinates z , when 0z z then 0( ) 0z  . 

For homogeneous and symmetrical beams, the neutral line coincides with the 

symmetry axis. However, in the general case the neutral line does not coincide with 

the axis of symmetry of the beam. The symbol k is the radius of curvature of the 

neutral line z0. Since the neutral line is not long deformed, the initial distance between 

the two cross-sections in terms of the neutral line is:                                      

                        0L k                                                       (12) 

The distance between the point at section 1 and the point at section 2 of the 

material layer with z-coordinate after deformation will be: 

                  0( )L k z z                                            (13)                                                                       

From the formula (12) and (13), consider the case that the neutral axis coincides 

with the symmetry axis, ie 0 0z  , we deduce the relative strain of the material layer 

with z-coordinate is      
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where the curvature k of the beam is determined by the mathematical formula: 
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Substituting (15) into (14), ignoring the higher-order infinity, we get: 
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Substituting (16) into (6) we get: 
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We have the formula for determining the center of gravity of the dx-element and the 

inertia moment of the cross-section:             
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where Cz is the coordinates of the center of gravity in the z-axis, when the beam is 

deformed, then  Cz w .  

Substituting (18) into (17), we get: 
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Substituting (19) and (6) into equations (4), (5) one obtains: 
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Assume that the beam is homogeneous, the cross-section is constant, the neutral 

axis coincides with the symmetry axis, then 0, ,A I   these are constants. The motion 

equations have the form: 
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2.2 Eigenvalues and Mode Functions 

Free vibration equations of the PTM beam has the form: 
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For normal TM beams, their solutions have the variable dissociation [6,7], according 

to the expression: 

       ( , ) W( ). ( )w x t x T t               (26) 

       ( , ) ( ). ( )x t x T t                 (27) 

For PTM beams, this needs to be proven: 

Lemma proving the ability to dissociation solutions. Derivative Eq. (25) according 

to the variable x, then substituting equation (21) into it we get: 
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From Eq. (24) we can also derive: 
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Substituting (30) into (28) we have: 
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 Continuing the first-order derivative of Eq.(21) with respect to the variable x we 

get 
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From (23) we derive the components and their derivatives and then substitute (32), 

the same transformation we get the equation: 
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Thus, equations (31) and (33) are dissociation equations written for each variable. 

Moreover, they have the same form. Thus the solutions (26) and (27) are still valid for 

RTM beams. 

Eigenvalues and Mode Functions. Derivative (26), (27) then substituting into the 

equation (24), (25) transform we get: 
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Since the right sides of equations depend on t and the left sides of the equations 

depend on x, the two sides must be constants. 
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Substituting (36) into Eq.(34) and Eq.(35), transform we get: 
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From Eq. (37) we have: 
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Deriving Eq.(38) with respect to x and then substituting (39) into it, we get the 
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The characteristic Eq.(40) is: 
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Replacing 2k  , we have the equation: 
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That c is called cut-off frequency. This is a mathematical value, practically no natural 

frequency of a beam will equal this value. 

Case 2. 0c  . Its delta determinant is positive definite: 2=b 4 0c    

 Indeed 
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Due to 
0 1 , then 0  . The solutions of Eq. (43) are: 
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 We consider two frequency regions: 

Frequency region c  . From (44) and (42) deduce c < 0. From 2k  we have: 
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where 

    
2 4

2

b b c


  
 ; 

2 4
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b b c

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Frequency region c  . From (44) and (42) we deduce c < 0. We have:  

 With 
2
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4
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k

  
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The equations (37) and (38) having solutions are determined according to the four 

eigenvalues 1 2 3 4, , ,    as follows: 

Case c  . Solutions of the form 

31 2 4

1 2 3 4 1 2 3 4( ) = 
xx x x x x i x i xW x C e C e C e C e C e C e C e C e
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31 2 4
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Using Euler's formulas 

cos sin , cos sini x i xe x i x e x i x        , sinh ,cosh
2 2

x x x xe e e e
x x
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 
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We get the trigonometric form: 

 1 2 3 4( ) = sinh cosh sin cosW x a x a x a x a x              (52) 

 1 2 3 4( ) = sinh cosh sin cosx d x d x d x d x               (53) 

where ia and id  (i = 1, 2, 3, 4) are constants depending on the boundary conditions of 

the beams. The functions ( )W x and ( ) x are not independent, so the constants ia  

and id  are also not independent. 

Substituting (52), (53) into (37), identifying the trigonometric functions on both 

sides, we get: 

 
2

2 2

1 2 1 2 1 1 0  Ga Gd a d a a h
G



 
      

 

 
       

 
      (54) 

 
2

2 2

2 1 2 1 2 2 0Ga Gd a d a a h
G



 
      

 

 
       

 
      (55) 

 
2

2 2

3 4 3 4 3 3 0a G Gd a d a a f
G



 
      

 

 
        

 
      (56) 

 
2

2 2

4 3 4 3 4 4 0Ga Gd a d a a f
G



 
      

 

 
          

 
     (57) 
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where    
2 2

 ,h f
G G

 

   
 

   

   
      
   

            (58) 

Substituting equations from (54) to (57) into (53) we get the mode functions: 

 1 2 3 4( ) = sinh cosh sin cosW x a x a x a x a x              (59) 

 
2 1 4 3( ) = sinh cosh sin cosx a h x a h x a f x a f x               (60) 

Case c  . Solutions of the form 

   
1 2 3 4W( ) = i x i x i x i xx C e C e C e C e        

   
1 2 3 4( ) i x i x i x i xx C e C e C e C e             

Using Euler's formulas to trigonometric form and similar transformations, we get 

mode functions: 

 1 2 3 4( ) = sin cos sin cosW x b x b x b x b x               (61) 

 
2 1 4 3( ) = sin cos sin cosx b f x b f x b f x b f x                (62) 

where 

           
2

 f
G



 


 

 
  
 

           (63) 

Thus, the mode functions of the PTM beam is determined by formulas (59) and 

(60) in case c  , or by formulas (61) and (62) in case c  . 

3 Calculation of Natural Frequencies and Mode Shapes 

3.1 Simply Supported PTM Beam 

The boundary conditions of simply supported (SS) PTM beam are both transverse 

displacement and bending moment equal zeros at 0x   and x l : 

 (0, ) 0w t  ;    
 

0

0,
0, 0, 0

t
M t EAw t EI

x





  


        (64) 

  ( , ) 0w l t  ;    
 

0

,
, , 0

l t
M l t EAw l t EI

x





  


         (65) 

Substituting (26) and (27) into (64), (65) we obtain: 

       (0) 0, 0 0, ( ) 0, 0W W l l               (66)  

Case c   

Natural frequencies. Substituting the Eqs. (59), (60) into (66) we get: 

 2 4(0) = 0W a a                      (67) 

 
2 4(0) = 0a h a f                       (68) 

 1 2 3 4( ) = sinh cosh sin cos 0W l a l a l a l a l              (69) 

 
2 1 4 3( ) = cosh sinh cos sin 0l a h l a h l a f l a f l                  (70) 
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From (67), (68) we have: 

         2 4 0a a                 (71) 

Substituting (71) into (69) and (70) we get  

1 3 sinh sin 0a l a l              (72) 

1 3sinh sin 0a h l a f l               (73) 

For the solutions a1 and a3 are non-zero, then there must have: 

sinh sin
0

sinh sin

l l

h l f l 

 

   



=>  sin sinh 0f h l l         (74) 

From the formula (48) and (58) we obtain 

    2 0f h       .              (75) 

From (46), because 0   so sinh 0l  . Therefore, formula (74) is obtained  

    sin 0l  =>  1,2,..., L

j
j N

l


              (76) 

Substituting (48) into Eq.(76) and solving it we get the natural frequencies
j c   

Mode shapes. Multiply both sides of the Eq. (72) by f  and then add to (73) we get: 

        1 sinh 0a f h l      

Because   0, sinh 0f h l      so inferred 1 0a  . Therefore, to have a solution 

0ia   then 3 0a  . Substituting 1 2 4 0a a a   , 3 0a  into (59), (60) we get the 

mode shapes: 

    3( ) = sin
j

W x a x
l


, 3( ) = cos

j
x a f x

l



           (77) 

Case c   

Natural frequency. Substituting the Eq. (61) and Eq. (62) into (66), the same proof we get: 

      sin 0l  =>  1,2,...,
n

n
l


             (78) 

Substituting (49) into Eq.(78) and solving it we get the natural frequencies n c   

Mode shapes. From formulas (61) and (62) similarly, we have:         

1( ) = sin
n

W x b x
l


,  

1( ) = cos
n

x b f x
l




          (79) 

Numerical results. Numerical calculation is performed with the set of parameters as [6]. 

The properties of the beam are: length l = 1 m, cross-section with width b = 0.02 m and 

height h = 0.08 m, E = 2.1x1011 N/m2, G = 8.1x1010 N/m2, ρ = 7860 kg/m3, κ = 0.5. We can 

determine the cut-off frequency according to the formula (44) is c  98291.706 rad/s 

(15643.62 Hz) and determines the number of natural frequencies less than the cut-off 

frequency is NB  = 73. 

To compare the numerical results with EB beam, we have the formula to determine the 

natural frequencies of EB beams [20]: 
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2

k

k EI

l A






 
  
 

, with k = 1, 2, 3… 

The mode shapes of displacement and rotation of SS PTM beam as shown in Fig.3 and 

Fig.4. Calculation results of natural frequencies presented in Table 1. 

Table 1. Natural frequencies of SS PTM Beam 

 EB [20] 

(rad/s) 

 TM (rad/s) PTM (rad/s) (b-a)/a 

(%) 0 0   

(a) 

[6] 4

0 10  

 

4

0 5.10  

(b) 

4

0 10   

1 1178.141 1159.497 1159.4 1148.428 1103.046 1170.460 4.87 

2 4712.566 4436.759 4436.8 4426.191 4383.668 4447.301 1.20 

3 10603.274 9357.616 9357.6 9347.665 9307.755 9367.558 0.53 

4 18850.265 15409.984 15410.0 15400.680 15363.412 15419.283 0.30 

5 29453.539 22182.504 22183.0 22173.824 22139.071 22191.182 0.20 

6 42413.096 29389.344 - 29381.241 29348.809 29397.446 0.14 

7 57728.937 36845.603 - 36838.026 36807.706 36853.178 0.10 

8 75401.061 44435.880 - 44428.781 44400.375 44442.979 0.08 

9 95429.468 52089.639 - 52082.972 52056.300 52096.305 0.06 

10 117814.15 59764.516 - 59758.242 59733.142 59770.789 0.05 

15 265081.85 97885.610 - 97880.832 97861.716 97890.389 0.03 

From Table 2 it can be seen 

that: When the beam is sub-

jected to pre-compression 

( 0 0  ), the natural frequen-

cies of the PTM beam are redu-

ced compared to that of the 

normal TM beam. The more 

compressed the beam, the lower 

the frequencies. This is called 

“softening” in prestressed 

beams. When the beam is in 

pre-tensioned ( 0 0  ), its na-

tural frequency increases com-

pared to the normal beam. 

The natural frequencies of 

the PTM beams compared with 

the natural frequencies of the 

TM beams differ the most at 

Fig. 3. Mode shapes of transverse displacement 

Fig. 4. Mode shapes of cross-sectional rotation 
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the first frequency (about 4.9% corresponding to 4

0 5 10    ). It decreases rapidly 

as the frequency order increases. PTM beams when subjected to pre-compression 

( 0 0  ) deviate from EB beams more than when subjected to pre-tension ( 0 0  ). 

3.2 Clamped – Free PTM Beam 

Boundary conditions of clamped – free (CF) beams  

At 0x  , displacement and rotation are both 0: 

 
 

(0, ) 0 (0) 0;

0, 0 (0) 0

w t W

t 

  

  
                     (80)                          

At  x = l , torque is 0, shear force is 0, similarly we have: 

 
 

*

,
0 0

( )[ '( , ) ( , )] 0 W '( ) ( ) 0;

l t
l

x

k GA l w l t l t l l




 


  



    

                       (81)      

Case c   

Natural frequency. Substituting the Eqs. (59), (60) into (80), (81) we get: 

     2 4 0a a                        (82) 

      
1 3 0a h a f                        (83) 

           
2 1 4 3cosh sinh cos sin 0a h l a h l a f l a f l                   (84)

       1 2 3 4cosh sinh cos sin 0a h l a h l a f l a f l                   (85) 

From (82), (83) we get: 

        
4 2 3 1 ,  /a a a a h f                (86) 

Substituting (86) into (84) and (85) we get: 

2 1 2 1 cosh sinh cos sin 0a h l a h l a f l a h l                    (87) 

       1 2 1 2cosh sinh cos sin 0
h

a h l a h l a f l a f l
f



   



                (88) 

For the solutions a1 and a2 are non-zero, then there must have: 

       

sinh sin cosh cos

0
cosh cos sinh sin

h l h l h l f l

h
h l f l h l f l

f

   



   



       

       

 


     

 

or 

  

      

     

sinh sin sinh sin

cosh cos cosh cos 0

h l h l h l f l

h
h l f l h l f l

f

   



   



       

       

   

 
       

 

  (89) 

Equation (89) is the characteristic equation that determines natural frequencies, 

which is a nonlinear algebraic equation. Using the Newton – Raphson numerical 
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method to solve the equation (89) with j  are the values to be determined, we will 

find the frequencies: 

      
j with 1,2,..., Lj N so that

j c     

Mode shapes. From the formula (85) and (86) we deduce the coefficients correspond-

ing to 
j : 

 

  
 

 

  
     

 

 

 

   

( )

2 1 1

( ) ( ) ( )

3 1 4 2 1

cosh cos

sinh sin

; =  

j

j j

j j j jj

j jj

jj j

j j j j

j

j jj j j

jj

h
h l f l

f
a a a g

h l f l

h
a a a a a g

f



 



 





   

   

  

   
  

   

  (90) 

in which 

   
           , , ,

j j

j j j j j jh h f f               

  
 

 

  
     

cosh cos

sinh sin

j

j j

j j j jj

j j j

j j j j

h
h l f l

f
g

h l f l



 



 

   

   

  


  

 

Substitute the coefficients in (59) and (60) we get mode shapes 

        1( ) = sinh cosh / sin cos
j j j

j j j j j j jW x a x g x h f x g x        (91) 

        1( ) =  sinh cosh sin cos
j j j j

j j j j j j jx a h g x h x f g x h x            (92) 

Case c   

Natural frequency. Substituting (61), (62) into the boundary conditions (80) and (81), 

doing the same we get: 

The characteristic equation to determine the natural frequencies 

  

      

     

sin sin sin sin

cos cos cos cos 0

f l f l f l f l

f
f l f l f l f l

f

   



   



       

       

   

 
       

 

  (93) 

Using numerical method to solve the Eq. (93) we will find the frequencies: 

    k with 1,2,..., Lk N stars so that k c     

Mode shapes: 

 
       1W ( ) = sin cos / sin cos
k k k

k k k k k kx b x z x f f x z x          (94) 

 
        1( ) = sin cos sin cos
k k k k

k k k k k kx b z f x f x z f x f x             (95) 

where            , , ,
k k

k k k k k kf f f f               
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          
     

cos / cos

sin sin

k k k k

k k k k

k k k

k k k k

f l f f f l
z

f l f l

   

 

   

   

  


  
 

Numerical results. The properties of the beam are: length l = 7.62 m, cross-section area 

A = 5.90  10-3 m2 , E = 2.14 1011 N/m2, G = 8.18 1010 N/m2, inertia moment of cross-

sectional I = 4.58  10-5  m4, mass of beam m = 350 kg, κ = 5/6.  

The calculation results are compared with the EB beam in [20], the frequencies of it 

determined by analytical solution: 
2

2

EI

Al





               (96) 

where is   the solution of the characteristic equation: 

           cos cosh 1 0                 (97) 

The calculation results are as shown in Table 2. On Fig.5 is the mode shapes of trans-

verse displacement and cross-sectional rotation of CF PTM beam. 

The results in Table 2 show that natural frequencies change rule of CF beam is 

similar to the case of SS beam. The first order natural frequency will deviate from the 

TM beam natural frequency the most (about 5.37% corresponding to 4

0 3 10    ).   

Table 2. PTM beam natural frequencies (Hz) 

  PTM (a) 

(Hz) 

TM (b) 

 (Hz) 

EB [20] 

    (Hz) 

 

(a-b)/b 

   (%) 
4

0 10    
4

0 3.10    
4

0 10   0 0   

1 4.399 4.204 4.490 4.443 4.451 5.37 

2 27.582 27.310 27.744 27.651 27.899 1.23 

3 76.422 76.08775 76.665 76.507 78.119 0.55 

4 147.324 146.9587 147.654 147.417 153.082 0.31 

5 238.563 238.180 238.993 238.661 253.057 0.20 

6 347.881 347.487 348.426 347.981 378.023 0.14 

Fig. 5. Mode shapes of transverse displacement and cross-sectional rotation of CF 

PTM beam 
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7 472.9906 472.5916 473.6632 473.0928 527.9831 0.11 

8 611.6942 611.2933 612.5064 611.7969 702.9361 0.08 

9 761.9721 761.5722 762.9342 762.0745 902.8825 0.07 

10 922.0253 921.6863 922.7573 922.1267 1127.822 0.05 

3.3 Clamped-Support PTM Beam 

Boundary conditions of clamped – support (CS) beams  

At 0x  , displacement and rotation are both 0: 

     
 

(0, ) 0 (0) 0;

0, 0 (0) 0

w t W

t 

  

  
                 (98)                          

At  x = l , displacement is 0, moment is 0, similar to CF beam we have: 

 
 

( , ) 0 ( ) 0;

,
0 0

w l t W l

l t
l

x




  


  



                               (99)      

Case c  . Substituting the Eq.s (59), (60) into (98), (99), transform we get: 

Natural frequency. Characteristic equation to determine frequencies: 

 
 

  

sinh sin cosh cos

cosh cos sinh sin 0

h
l l h l f l

f

l l h l h l



 



 

     

     

 
   

 

   

      

 (100) 

Mode shapes.  

 
 

 

 1( ) = sinh cosh sin cos

j

j

j j j j j j jj

h
W x a x g x x g x

f





   
 
   
 
 

    (101) 

 
        1( ) =  sinh cosh sin cos

j j j j

j j j j j j jx a h g x h x f g x h x          (102) 

where 

           , , ,
j j

j j j j j jh h f f              ,

    / sin sinh

cosh cos

j j

j j

j

j j

h f l l
g

l l

   

 





 

Case c  . Substituting (61), (62) into (98) and (99), transform we get: 

Natural frequency. Characteristic equation: 

    sin sin cos cos cos cos sin sin 0
f

l l f l f l l l f l f l
f



   



           
 

         
 

Mode shapes 

        1( ) = sin cos / sin cos
k k k

k k k k k kW x b x z x f f x z x           (103) 

        1( ) = sin cos sin cos
k k k k

k k k k k kx b z f x f x z f x f x              (104)

where 
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           , , ,
k k

k k k k k kf f f f              ,

    / sin sin

cos cos

k k

k k

k

k k

f f l l
z

l l

   

 





 

Numerical results. The properties of the CS beam are similar to the CF beam. The 

calculation results are compared with the EB beam in [20], frequencies of it determined 

by analytical solution: 
2

2

EI

Al





               (105) 

where is   the solution of the characteristic equation: 

           tan tanh 0                (106) 

The results presented in Table 3 show that the change of natural frequencies of 

PTM beam compared to TM beam and EB beam are similar to the above cases. The 

mode shapes show in Fig.7 are consistent with the boundary conditions of the CS 

beam. In Fig.8 shows the relative difference of frequencies of PTM beam versus TM 

beam. The difference increases as the prestress increases, the difference decreases 

rapidly as the frequency order increases. 

Table 3. Natural frequencies of PTM CS beam (Hz) 

 PTM beam 

(Hz) 
TM 

(Hz) 
EB [20] 

(Hz) 

(a-b)/b 

(%) 

4

0 1.10  

 

4

0 2.10  

(a) 

4

0 1.10   4

0 2.10 

 

0 0   

(b) 

  

1 19.042 18.680 19,744 20.086 19.396 19,522 3.69 

2 61.770 61.366 62,569 62,964 62.171 63.264 1.29 

3 127.273 126.857 128,100 128.511 127.687 131,995 0.65 

4 213.626 213.209 214.458 214,873 214.043 225,720 0.39 

5 318.628 318.213 319,455 319,867 319.041 344.438 0.26 

6 439.987 439.578 440,803 441.211 440.395 488.150 0.19 

7 575.474 575.073 576,277 576,677 575.875 656.854 0.14 

8 880.780 880.394 881,550 881,935 881.165 850.552 0.09 

9 1047.12 1046.74 1047.87 1048.255 1047.50 1069.24 0.07 

10 1220.66 1220.29 1221,40 1221.768 1221.03 1312.92 0.06 

  

 

 

 

 

Fig. 6. Mode shapes of transverse displacement and cross-sectional rotation of 

clamped –support PTM beam 
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4 Conclusions  

This study is based on the vibration equations that has been established for the TM 

beam [6-9] to establish the vibration equations of PTM beam and general form of the 

mode functions by the MAM method, which the proof of dissociation of solutions is 

presented.  

Using that general form of mode functions with specific boundary conditions, the 

study established characteristic equations to determine the natural frequencies and 

specific mode shapes for some PTM beam models such as SS beam, CF beam and CS 

beam. Other types of beams can also be determined in a similar. The article has per-

formed numerical calculations for those beam models, the calculation results are 

compared with TM beams [6] or EB beams [20] showing: 

Calculations give similar results for beams TM [6] when the prestress of PTM 

beams is zero ( 0 0  ). The results also show the agreement with the EB beam [20]. 

The mode shapes presented in the figures show that they are suitable for the corre-

sponding boundary conditions. 

When the beams are pre-compressed ( 0 0  ), the difference in frequencies of the 

PTM beam compared to the TM beam are increased as the prestress increases, in the 

direction the frequency of the PTM beam is smaller. When the beams are pre-tension  

( 0 0  ), this difference also increases, but in the direction the frequency of the PTM 

beam is larger than that of the TM beam. The difference will be greatest at first fre-

quency and it is significant. This difference decreases rapidly as the order of the fre-

quencies increases. 
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