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ABSTRACT. 
The article presents the dynamic analysis of trusses with initial length imperfection of elements under harmonic loading, taking into account the geometrical nonlinearity. The hybrid finite element formulation in the non-linear analysis of the trusses considers the initial length imperfection of elements as a dependent boundary constraint in the master equation of stiffness. Moreover, it is incorporated with the establishment of the modified system of equations. In order to overcome the mathematical complexity in dealing with initial length imperfection, this article recommends a novel approach to solve the non-linear dynamic problems on the basis of hybrid finite element formulation. In this research, the unknowns of the dynamic equilibrium equations are the displacements and forces, which are obtained from the use of virtual work. The hybrid matrix of elements of the truss is established based on the hybrid variation formulation with member length imperfection, taking into account non-linear deformation. The authors applied the Newmark integration and Newton Raphson iteration methods to solve the dynamic equations with consideration of geometrical nonlinearity. The research developed the incremental-iterative algorithm and wrote the calculation programming routine to illustrate dynamic responses of trusses with initial length imperfection under harmonic loading. The obtained results verify the accuracy and effectiveness of the proposed approach.
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INTRODUCTION 

The studies about non-linear dynamic problems have mainly meaning in designing and calculating slender structures as trusses. The non-linear dynamic behaviour arises from both material and geometrical nonlinearities. Much research about approaches and techniques for solving problems of non-linear dynamic analysis has already been concerned and developed several decades ago [1-13]. Trusses' geometrical non-linear dynamic analysis requires establishing suitable mathematical models and solving algorithms [8-11]. In modelling trusses with initial length imperfection of elements taking into account geometrical nonlinearity, the displacement-based finite element method (FEM) is applied, in which the element imperfection is impossibly replaced with the nodal equivalent forces. In such case, when formulating the mathematical model of non-linear analysis of dynamic problems of trusses with length imperfection of element, it is required to consider the length imperfection of element as a boundary constraint that depends on the master equation of stiffness. It is also essential to produce the modified system of equations [6]. In [14-17], the previous authors have already been concerned and studied the non-linear dynamic analysis of trusses under dynamic loading. In addition, a significant number of researches involve the problem of element length imperfection of structures [17-27]. In these studies, it is applied differently approaches to solve particular problems. It could see that the non-linear dynamic analysis with finite element formulation of trusses, which is subjected to dynamic loading, has specific difficulties in treatment with the initial imperfection. In [17, 19], the authors applied the mixed finite element method to deal with the non-linear dynamic and buckling analysis of trusses. From the studies, it can be concluded that mixed FEM has both advantages and advantages and disadvantages. Therefore, in this research, to overcome the mathematical complication in dealing with the initial member length imperfection, the authors proposed another approach on the basis of hybrid finite element formulation beyond well-known approaches to solving the non-linear dynamic analysis of trusses under harmonic loading. The article applies the hybrid formulation to establish a non-linear dynamic equation of equilibrium of trusses using the principle of stationary potential energy. The proposed hybrid finite element of the truss with the initial length imperfection is constructed based on hybrid variation formulation taking into account the large deformations of trusses. Besides that, this article also applies the incremental-iterative algorithm based on a combination of both integration methods of Newmark and Newton Raphson. Based on the algorithm proposed by the authors, the calculation procedure is established, and the routine is written in Mathcad software to illustrate the dynamic responses of trusses with initial length imperfection under harmonic loading.

ESTABLISHMENT OF DYNAMIC EQUATION OF EQUILIBRIUM OF TRUSS ELEMENT USING HYBRID FEM

Dynamic equilibrium equation of truss element with member length imperfection considering geometrical nonlinearity
To establish hybrid finite element, in this research, the authors propose the discretization of elements of truss structure by two following types: type eI – perfect element; type eII- imperfect element with initial length imperfection ∆e (as shown in Fig. 1).
Fig. 1 illustrates the elements (e) of truss in the global coordinate system X0Y. 
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Figure 1: Illustration of eI and eII elements

Consider the following symbols:
{X1, Y1}, {X2, Y2} - ith and jth coordinates of nodes in XOY system coordinate before deformation;                       
∆e - initial length imperfection of element; 
Le - truss element’s primary length; 
L0, L – distances respectively before and after deformation between ith and jth nodes 
A – area of cross section of truss element, 
E – Material’s elastic modulus; 
N- axial load in truss element;
fe - consequent external force at the ith cross section after deformation (i’);
u5 - is unknown of force at the ith cross section after deformation. From equilibrium condition, it is obtained: u5=fe=N;
u1, u2, u3, u4 - nodal displacements; 
m1, m2, m3, m4 - nodal concentrated masses;
f1, f2, f3, f4 - nodal forces;
fI, fD, p(t) - inertia force, damped axial force, external force respectively;  
The Fig. 2 illustrates the elements eI and eII with two nodes in global coordinate system XOY.

[image: ]
Figure 1: Elements of truss eI and eII taking into account large displacements

The element length after deformation could be determined by following formula:


                                                                                          (1)

The deformation along the axis of the element of two types of elements (perfect and imperfect elements) is determined by the following expressions: 


                                                                 (2)                                        

The work of internal axial force could be determined for each type of element by following formulas: 


                   (3)  

The virtual work of external forces for each type of element could be calculated as follows: 


                                                           (4)    
      
From Eqs. (3) and (4), it is obtained the total work of all external forces and inertia forces of the mechanical system:   

	
             
	


(5)                                                                                             




On the basis of the principle of virtual work, in the equation of equilibrium, the virtual work of external forces is zero. Therefore, from Eq. (5), it is shown that: 


                                                                                                                        (6)

The axial force is expressed by deformation. Add the deformation from Eq. (2) to Eq. (6), it is obtained the following: 


                                                             (7)                 

The dynamic equation of equilibrium [6] for the element of trusses could be written as a fundamental differential equation which describes dynamic equilibrium:


                                                                              (8)                                                                                                                                           
  
Substitute fi from Eq. (8) for Eq. (7), combine Eq. (2) and Eq. (7), it is obtained:


                                                       (9)

Determine following:

	

	




The Eq. (9) could be expressed as follows:

                                                        (10)                                                                         

Where u(u(eI) ; u(eII) ) - the unknown’s vector
Expressing the Eq. (10) in following matrix form:


                                                                                                             (11)

Here, express the parameters as follows:


                                                                                                       (12)

The dynamic equation of equilibrium (11) is a second- order non-linear differential equation 
In FEA, to solve the non-linear problems, it is applied the approach that divides the total load into the incremental step of load. Apply the Taylor series formula to expand function of Eq. (7) around the variable point in establishing the incremental equation. Note that it is kept only linear terms in , the incremental dynamic equation of equilibrium of truss element is obtained as follows:  


                                                                                             (13)                                                                                       

Put: 


          

The Eq. (13) can be written as follows and apply Taylor series: 


                                                                                          (14)    
                                            
 In which:
	
 is the vector of incremental unknowns (displacements and increments); 
         are respectively the vectors of incremental acceleration and incremental velocity;
  M(e), C(e) are respectively the matrices of mass and damping;
         is the vector of incremental dynamic load;
In Eq. (14), the mixed matrix of truss element (e) with initial imperfection of length  is expressed as follows:


                                                                         (15)

Specifically, the elements in the matrix  are as follows. For element of stiffness matrix of truss elements eI:


    


        

                     






For element of stiffness matrix of truss elements eII:


 


 


 


 


 




Dynamic equation of equilibrium
Assemble all the element matrices of the truss to the form of global matrices of the system. The dynamic equation of equilibrium and the incremental dynamic equation of equilibrium of the truss system is obtained:


                                                                                                                                    (16)  
                                                                                                                         

                                                                                                                                    (17)

In which 


           

In FEA for structures, the solution of a non-linear dynamic equation consists of the solutions of a dynamic equation and a non-linear statical equation [28]. In this research, the authors applied Newmark’s method [29] to solve the dynamic equation with harmonic loading that is considered a time-dependent force [30]. This method helps to simplify the differential equation of the equilibrium of a structure; therefore, it could be solved incrementally and algebraically.
Applying Newmark’s method [30-32], the dynamic equation could be presented in the following incremental form:


                                                                                                                                (18)

    Adding  from Eq. (17) to Eq. (16), it is obtained: 
 
	
            
	                                         (19)




Eq. (19) can be expressed in short form as follows:


                                                                                                                                                  (20)    

To solve the non-linear static Eq. (20), the Newton-Raphson iterative method is applied. 


SOLVING ALGORITHM FOR DYNAMIC EQUILIBRIUM EQUATION

The equation system (20) corresponds to an iteration, as shown in Figure 3a. From the equilibrium point (A, t), it is found the next equilibrium point (B, t+∆t). It is shown that, with an iteration, the increments due to residual force are significant. To reduce the increment (eliminate residual force) and apply in many iterations (Fig. 3b), the authors established an iterative Eq. (21), where Eq. (20) is a particular case corresponding to the first iteration of Eq. (21). Eq. (21) is solved applying the Newton-Raphson iterative algorithm as shown in Fig.3.
Assume that it is required to solve the equation . According to Newton-Raphson iterative algorithm, the equation of the corresponding increment is presented as follows:

	
                                                    
	                                                                                                                                                                (21)



                                          
Compare Eq. (20) with Eq. (21); it will be found that   satisfies the condition.

	
           
	      
                                                                              (22)



From Eq. (22) and note to Eqs. (16), (19) and (20), the expression of vector  will be found as follows: 


                                                                       (23)
	
	


Eq. (21) can be re-written as follows:


                                                                                                                                        (24) 
                                                                                          
From Eq. (23), it will be checked easily the vector  that satisfies Eq. (22). Therefore, the solution
of Eq. (20) will correspond to the first iteration of Eq. (21). However, Eq. (21) allows many iterations to eliminate residual force .
It is noted that at the time “t”, which corresponds to the equilibrium point   in Fig. 3b, the values of displacements, velocity and acceleration are already found. The next equilibrium point to find is the point B(t+t). From Eq. (22), when given, the equation of equilibrium at the time (t+t) is satisfied. 
After finding the displacement and the increment of displacement (u, u) at the point B(t+t), using Newmark’s formula, the corresponding velocity and acceleration will be found as Eq. (25):      


                                                                                                                     (25) 
	[image: ]                          Figure 3: Newton Raphson technique



The calculation procedure for solving non-linear dynamic analysis of trusses with initial length imperfection is established using Mathcad programming software, as shown in Fig. 4.

[image: ]
Figure 4: Incremental-iterative solving procedure for non-linear system of equations applying Newton Raphson technique

NUMERICAL INVESTIGATIONS

Example 1

The research investigates the truss shown in Fig.5 under harmonic load P(t). The harmonic load varies in the following functions P(t)= -100·sin(40πt) (kN) [17]
The considered five-element truss has initial imperfection ∆eII(1) in element one because of errors in the process of manufacture. All truss elements have the same material and cross-section area. It is given the following parameters:
E=2·104kN/cm2, A=4cm2, ∆eII(1)=6cm, m=50·10-5kNs2/cm, c=10-2kNs/cm
In this research, to solve the dynamic equation of the truss, the authors applied the Newmark average acceleration method with (=1/2; =1/4). The investigated time period is [t0,t1]=[0, 0.75s] with increment of time ∆t=0.0025s.    
The investigated nodes are node 1 and node 2 with displacements u1, u2, u3, u4 shown in Fig. 5. 
The internal forces and displacements of the truss are considered as the initial parameters at time t0=0, which are calculated based on the hybrid finite element model as follows:

[image: ]
Figure 5: Examined truss system

The obtained results of the non-linear dynamic analysis of truss subjected to harmonic load are the relationships between different parameters:  displacement, the axial force with time response. Compared with the results calculated to mix finite element formulation in [17], it is obtained in Fig. 6 and Fig.7. Compared with the mixed finite element formulation, the hybrid finite element is more effective because of the number of unknowns. The mixed finite element formulation has nine unknowns in system equations, whereas the hybrid has only five unknowns.

[image: ]
Figure 6: The relationship “Vertical displacement – time” (u2-t) in investigated node 1

The results shown in Fig.6 and Fig.7 show that the calculated results using mixed and hybrid finite element formulations converged. However, the number of unknowns using the hybrid finite element formulation is less than the ones using the mixed finite element formulation. From there, it is said that it helps the calculation process simpler.

[image: ]
Figure 7: The Axial load – time relationship (N1-t) of element with imperfection length 

Example 2

Assume that the investigated truss (illustrated in Fig. 8) is subjected to harmonic load P(t). The harmonic load varies in functions P(t)= -500·sin(40πt) (kN)
Due to the manufacturing, four-element truss shown in Fig. 8 has initial length imperfection ∆eII(1);(2);(3);(4).
All truss elements have the same material and cross-section area 
The parameters are given E=2·104kN/cm2, A=10cm2; ∆eII(1)= 2cm; ∆eII(2)= 2cm; ∆eII(3)= 2cm; ∆eII(4)= 2cm; 
m=100·10-5kNs2/cm, c=10-2kNs/cm. In this article, the authors applied Newmark average acceleration method with (=1/2; =1/4) to solve a dynamic equation of the truss system. The investigated time period is [t0, t1]=[0, 1s] with time increment ∆t=0.0025s.
The coordinates of truss nodes shown in Fig. 8 are given in Table 1.
The investigated nodes are 27 and 28, with the displacements shown in Fig. 8.

[image: ]
Figure 8: Examined truss system

 The results of the calculation are presented as relationships between different parameters of elements (displacement-time, axial load – time), and then these results are compared to the truss with perfect length of all elements 
∆eI(1)÷(70) =0 cm
Table 1: The coordinates of truss nodes in global coordinate system XOY

	Node
	1
	2
	3
	4
	5
	6

	Coordinate
(X,Y) cm
	

	

	

	

	

	


	Node
	7
	8
	9
	10
	11
	12

	Coordinate
(X,Y) cm
	

	

	

	

	

	


	Node
	13
	14
	15
	16
	17
	18

	Coordinate
(X,Y) cm
	

	

	

	

	

	


	Node
	19
	20
	21
	22
	23
	24

	Coordinate
(X,Y) cm
	

	

	

	

	

	


	Node
	25
	26
	27
	28
	29
	30

	Coordinate
(X,Y) cm
	

	

	

	

	

	


	Node
	31
	32
	33
	34
	35
	36

	Coordinate
(X,Y) cm
	

	

	

	

	

	







	a)
	b)
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                                                          Figure 9: The displacement – time relationship of node 27: a - u53-t; b - u54-t 

	a)
	b)
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Figure 10: The displacement– time relationship of node 28: a - u55-t; b - u56-t

	a)
	b)
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Figure 11: The axial load – time relationship of element with imperfection length: a – element 1, N1-t; b – element 2, N2-t



	a)
	b)
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Figure 12: The axial load – time relationship of imperfection length: a - element 3, N3-t; b- element 4, N4-t

	a)
	b)
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Figure 13: The relationship between axial force - time of element with perfect length 13 and 14 (N13-t, N14-t)

	a)
	b)
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Figure 14: The relationship between axial force - time of element with perfect length element 15 and 16 (N15-t, N16-t)



Comments: 

From the comparison of obtained results in two cases under harmonic load (the truss with imperfection length of elements 1, 2, 3, 4 and the truss with the perfect length of all elements), it can be seen the following: 
Fig. 9 and Fig.10 show that the vertical displacements of investigated nodes 27 and 28 in two cases are not much different (u54-t, u56-t);
Fig. 11 and Fig. 12 show that the relationships of axial force – time in the imperfect elements (elements 1, 2, 3, 4) are much different in the two studied cases. (N1-t, N2-t, N3-t, N4-t);
From Fig. 13 and Fig. 14, it shows that the relationship of axial force-time in the perfect length elements 13, 14, 15, and 16 are not much different in the two mentioned cases (N13-t, N14-t, N15-t, N16-t);
Therefore, from the obtained results, it can be made the comments that in the trusses subjected to harmonic loading, the imperfection length elements are more affected by imperfect fabrication. In contrast, the perfection length elements are less affected.

CONCLUSIONS

From the obtained results of the research, it can be made the following conclusions: 
The mathematical model based on the hybrid finite element formulation to solve the non-linear dynamic problems of trusses with initial length imperfection shows outstanding advantages compared to the mathematical model based on the displacement and mixed finite element formulation;
The application of hybrid finite element formulation allows using of both displacements and forces as unknowns which not only gives the ability to set the initial member length imperfection into the hybrid matrix of trusses elements but also simplifies the calculation algorithm for non-linear dynamic analysis of trusses under harmonic loading;
In the trusses subjected to harmonic loads, the imperfection length elements are more affected by the fabrication errors than the perfection length elements;
The proposed approach and algorithm in this research can be effectively applied to investigate the non-linear dynamic responses of trusses subjected to harmonic loading.
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